Printer Friendly

BY ANY MEASURE: More than a century of work has reached its conclusion, with all base units of measurement now tied to defined constants rather than physical objects locked awaLfn vaults.

SCALES ARE NOT changing and the weather will not be noticeably different but, as of a couple of months ago, the definitions that underlie what your scale and thermometer report--along with standard definitions used in chemistry and electronics--have undergone a major overhaul. May 20 was the date that a more-than-centuries-long process of standardizing measurements reached its conclusion.

Since that time, the way we define an amount of light or electrical current--along with the more-familiar measurements of volume and mass--are based on descriptions that could be replicated by anyone, not just on Earth, but in galaxies far, far away.

"Nothing has changed and everything has changed," says Marc Salit, senior scientist and adjunct faculty member at Stanford University, who helped define these measurements--known as the International System of Units, or SI units--at the National Institute of Standards and Technology (NIST) for 28 years. He now directs an effort to apply similar rigor to definitions of biological measurements. That effort, called the Joint Initiative for Metrology in Biology, or JIMB (pronounced Jim-Bee), was founded by NIST and Stanford in 2014 and now is part of SLAC [Student Learning Assistance Center] National Accelerator Laboratory.

Salit indicates that the changes are invisible to most people but represent a major shift in the field of metrology. He was at the meeting in November 2018 where the assembled international representatives voted to adopt the proposed changes. "It was cool to see the U.S. voting yes, Russia voting yes, Ukraine voting yes, and China voting yes--all voting yes to adopt the resolution that redefines the SI."

Salit equates metrology with kids trying to share a chocolate bar equally. "We each have an innate sense of justice and fairness. This redefined SI is how we share. It's the basis for trade. It's the basis for equity. It's the basis for knowledge that is quantitative and interoperable and communicable."

The international effort to standardize measurements began with a treaty in 1875, when countries recognized the need for a consistent way of measuring products for trade. One early outcome was a standardized kilogram created in 1889 and housed in an underground bunker outside of Paris, known as Le Grand Kilo or Le Grand K. Copies exist around the world, but Le Grand K, protected with three sets of keys, set the standard.

Now, a kilogram, like each of the seven base units of measure, will hinge on unchanging properties of nature the speed of light, the wavelength of known atoms--and all other measurements build on those. 'This represents centuries of work bringing us together to share in a quantitative and repeatable, reproducible, precise manner," Salit notes. 'That redefinition makes it so that those units are coupled through a harmonious system that could be beamed into space."

To promote their effort, NIST has created superhero personas for each base unit of measure, all united around a common villain, Major Uncertainty --its symbol is a question mark.

Salit's work at JIMB focuses on trying to bring the same absolute specificity to biology. "How do you sequence something in Canada and I sequence it here and how do we compare? How do we make sure we got it tight?"

Salit helped devise standardized controls for measuring the activity of genes and is looking at standardizing descriptions of how scientists measure protein levels. As with the base units of measure, the goal is to help scientists communicate, share knowledge, and ultimately support fair partnership in trade.

May 20 also marked the debut of a new book on the history of measurement by Emanuele Lugli, assistant professor of art and art history at Stanford's School of Humanities and Sciences. The Making of Measure and the Promise of Sameness is a quest for the foundations of objectivity through an analysis of the ways measurement standards were made, displayed, used, and imagined between the 12th and the 17th centuries.

"We measure everything we do--the paths we run, the food we eat, the time we sleep--but we rarely consider the ways we measure," he points out. "We take what is displayed on our scales and on our apps for granted, even if we have no problem questioning the news, the weather forecast, even what our closest friends tell us. We take measuring as a simple, straightforward activity. We place our trust in it like in no other activity. Why? This book turns to the history of medieval and early modem Europe to search for the foundations of such a blind belief."

Lugli finds many answers in the late 12th century, when the governments of Italy's newly formed city-republics rejected imperial measurement standards and created new local ones, displaying them in their main squares. "This deceptively simple gesture--entirely overlooked by historians--triggered a series of revolutionary practices that not only redefined the cultural landscape of the time, but also laid the foundations of today's ideas about precision, reproducibility, and truth."

BY AMY ADAMS

Amy Adams is director of Science Comtnunications at Stanford (Calif.) University.
COPYRIGHT 2019 Society for the Advancement of Education
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2019 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:WEIGHTS & MEASURES
Author:Adams, Amy
Publication:USA Today (Magazine)
Geographic Code:1USA
Date:Jul 1, 2019
Words:825
Previous Article:HOW TO MAKE YOUR COLLEGE EDUCATION A "BARGAIN": "Just remember that these four years go by even faster than high school, and they will be the most...
Next Article:COMING SOON: THE 5G SPORTS EXPERIENCE: "Expect to see the first of these new services and applications rolled out in conjunction with the 2020 Summer...
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters