Printer Friendly

Australia : Evidence of quantum state in spin cluster chain predicted by Nobel Prize recipient found in magnetic mineral.

Nuclear techniques at ANSTO have helped to confirm a quantum spin phenomena, a Haldane phase, in a magnetic material, that has potential to be used as a measurement model for quantum computation.

Although there has been experimental evidence of the Haldane phase in other types of one dimensional antiferromagnetic materials, it is believed to be the first evidence in a cluster-based material.

The neutron spectrum from Pelican provided the very data that confirmed Haldane state exists in fedotovite as proposed by our other measurements and theoretical studies. The neutron data showed both spin gap and dispersion, that are characteristics of the Haldane state, said lead author A/Prof Masayoshi Fujihara of the Tokyo University of Science.

In an article published in Physical Review Letters as an 'Editors Suggestion' , a large collaboration of researchers, led by physicists from Japan, ANSTO instrument scientists Drs Richard Mole, Dehong Yu and Shinichiro Yano of the National Synchrotron Radiation Research Centre in Taiwan (who operates the Taiwanese instrument Sika at ANSTO), shared experimental evidence of the Haldane phase in fedotovite.

The framework for this unusual state of matter was predicted by Prof Duncan Haldane, who shared the Nobel Prize in Physics for the development of the topological phases of matter theory with David Thouless and Michael Kosterlitz in 2016.

Quasi one dimensional spin systems, such as fedotovite K2Cu3O (SO4)3, have an unusual magnetic behaviour at very low temperature, in which the ground state is a one-dimensional chain in a triplet configuration with S=1 spin. The S=1 occurs because there are an even number of S=1/2 on the magnetic Cu2+ ions at the ends of spin chain, as predicted by Haldane. Quasi-one dimensional chains such as fedotovite do not have a single spin but a group of spins forming a cluster. One cluster of atoms then weakly interacts with the neighbouring cluster of atoms, said Mole.

Magnetic coupling occurs because of super exchange interactions between the spin clusters and small antiferromagnetic coupling within the cluster.

That gapped behaviour is observable in the Pelican spectrum, which is highly sensitive to weak magnetic interactions, said Mole.

[c] 2018 Al Bawaba (Albawaba.com) Provided by SyndiGate Media Inc. ( Syndigate.info ).

COPYRIGHT 2018 SyndiGate Media Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Mena Report
Date:Feb 28, 2018
Words:366
Previous Article:Australia : Small Business Ombudsman congratulates new Deputy Prime Minister.
Next Article:Australia : Creating opportunities in the NT through ABA Grants.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters