Printer Friendly

Aspects of the Life Histories of Pinkrose Rockfish (Sebastes simulator) and Swordspine Rockfish (Sebastes ensifer) with notes on the Subgenus Sebastomus.

The rockfishes, genus Sebastes, form an extremely speciose group that often dominates the fish assemblages of California reefs between depths of 30 and 300 m (Love et al. 2002). The genus is divided into a number of subgenera (estimated at between 13 and 15, Hyde and Vetter 2007) among which the subgenus Sebastomus is particularly well characterized by congruencies in both morphology and genetics (Chen 1971; Rochas-Olivares et al. 1999; Hyde and Vetter 2007). In general, species in this subgenus are relatively small (to a maximum of 56 cm total length) (Table 1) and all are benthic or epibenthic (Love 2011). In addition, with the exception of Sebastes helvomaculatus, all of the North American species are relatively warm-water, and most are rare or absent from waters north of central California (Table 1).

The basic biology and ecology of most of the Sebastomus living in the northeastern Pacific (i.e., with ranges extending at least into California waters) have been fairly well documented (summarized in Love et al. 2002; Love 2011; Fields 2016). The main exception was Sebastes simulator, the pinkrose rockfish, and to a lesser extent, Sebastes ensifer, the swordspine rockfish, whose life histories, were poorly understood. In this paper, we report on a number of aspects on the biology of S. simulator, provide supplementary data on the biology of Sebastes ensifer, and update basic information on all species in the subgenus Sebastomus. We collected specimens by hook-and-line from southern California waters (primarily from the northern Channel Islands), immediately placed them on ice aboard a research vessel, and then froze them in the lab for later examination. All specimens were measured [standard (SL), fork (FL), and total (TL) length] to the nearest millimeter and most were weighed (to the nearest 0.1 g). All lengths are reported as TL.

We used sagittal otoliths for age determinations; these were removed and stored dry in coin envelopes. For age determinations, each otolith was glued to a wooden block, placed on a Bueller Isomet low-speed saw and a 0.05-cm wafer was cut from it, using two diamond-edge blades separated by a stainless-steel shim. Before reading, the wafers were slightly burned over an alcohol lamp. The wafers were then placed in a water-filled, black-bottomed watch glass and examined under a dissecting microscope. All wafers were read twice by M. Love. When reading did not agree, the otoliths were read again. The value of two coincident readings was accepted as the best estimate of age. We judged that the otoliths of about 5% of the specimens were unreadable due to poorly developed annuli.

Lengths at ages were estimated by direct observation of otolith annuli and by using the von Bertalanffy growth model:

[L.sub.t] = [L.sub.[infinity]] [1 - exp - k (t - [t.sub.0])],

Where [L.sub.t] = length at time r;

[L.sub.[infinity]] = theoretical maximum length;

K = slope of curve expressing the rate of approach to L; and

[T.sub.0] = theoretical age at which [L.sub.t] = 0

The relationships between total length and weight fit the relationship W = [aL.sup.b], where W = weight in grams and L = total length in centimeters, and a and b are constants. The values of a and b were determined using [log.sub.10] transformation and fitting the values to a straight line by least squares. The resulting relationships were compared using an F-test. To test whether differences between genders (if any) were an artifact caused by the larger female gonads, we subtracted gonad weight from body weight, generated the length-weight relationships for each gender and again tested these between genders.

We computed condition factor (a measure of fat storage) as

100 x [(W - GW) /[L.sup.3]]

Where W - body weight (g), GW = gonad weight (g), and L - total length (cm) of mature rockfishes. Condition factor was computed using body weight with gonad weight subtracted, so as to minimize the effects of seasonal changes in gonad size. We compared these values between seasons (reproductive and nonreproductive) within sexes and between sexes, using the Mann-Whitney U-Test (Love et al. 1990).

We determined female reproductive stages macroscopically, characterizing the ovaries into five stages (Love et al. 2002): maturing (vitellogenesis), uneyed (fertilized), eyed, spent, and resting (transitional). Within the rockfishes, it is difficult to distinguish between prereproductive and mature-resting stage females during the nonreproductive season, as at both stages females exhibit small, light-colored ovaries (Love et al. 1990; Love et al. 2002). For this reason, our analyses of age and size at first maturity only included individuals from the reproductive season. A gonadosomatic index (GSI) was calculated for female S. simulator (this had previously been reported for S. ensifer in Love et al. 1990) using the formula:

GSI = (GW/BW) x 100

Where GW = gonad weight and BW = total body weight.

We determined egg production by counting subsamples of unfertilized eggs, referable to "gonad stage 3" in Wyllie Echeverria (1987) or "vitellogenesis" in Love et al. (2002). We used only those females taken both 1) early enough in the reproductive season that no eye larvae were observed in ovaries and 2) late enough that eggs would be large and easily counted. In the lab, eggs were incised from the ovarian membrane and place in Gilson's solution (Love et al. 1990) for about one month or until the eggs came loose from the ovarian tissue. Before counting, the ovaries were repeatedly washed and the egg masses broken up to remove remaining connective tissue. The eggs were weighed, subsamples taken, and these were weighed. Eggs in each subsample were counted and the mean number per weight calculated for each subsample. Egg production was estimated by the calculation:

F = (TW x SN) /SW

Where F = fecundity, TW = total weight of gonads, SN = mean subsample of egg number, and SW = subsample weight.

Stomach contents were sorted taxonomically into six food item categories (copepods, crabs, euphausiids, fishes, salps, and crustacean pieces) and the volume of each category was measured by liquid displacement and presented through the Index of Relative Importance (Pinkas et al. 1971). We collected 181 S. simulator between 1995-2014 and 229 S. ensifer between 2000-2012; most individuals of both species were collected from 2007-2013. Length conversion factors between standard (SL), fork (FL), and total lengths (TL) for both species are shown in Table 2.

We aged S. simulator between the lengths of 10.1 and 28.1 cm. Male S. simulator live to at least 39 years and females to at least 32 years (Table 3). Males may grow somewhat larger than females (Fig. 1). The von Bertalanffy equation fits the male growth pattern well; however, it does not accurately predict female growth (Table 3, Fig. 1). This is likely because we aged too few young females. We aged S. ensifer between the lengths of 11.1 and 23.0 cm. The maximum life span of male and female S. ensifer may be similar as the oldest female was 38 years old and the oldest male was 37 years old (Table 3). We saw no evidence of gender-based differences in maximum length. For S. ensifer, the von Bertalanffy equation appeared to adequately fit the growth patterns of both genders (Table 3, Fig. 1) and, based on k values, growth rates were similar. We both measured and weighed a total of 77 males and 50 females of S. simulator. The overall length-weight relationship was W = [0.004828TL.sup.3.33123]; females were significantly heavier at length (W = [0.004117TL.sup.3.39021]) than males (W = [0.003196TL.sup.3.45416]) (F = 4.2992, P = 0.05). However, when gonad weight was subtracted from body weight, there was no significant difference in the length-weight relationship (F = 0.4929). Length-weight relationships for S. ensifer are given in Love et al. (1990). For S. simulator we found significant within-gender differences in condition factor between seasons (Table 4). In both males and females, condition factor was slightly higher during the June-November season. Condition factors for both male and female S. ensifer are given in Love et al. (1990).

A few female S. simulator were mature at 14 cm, 50% were mature at about 17 cm, and all were mature at 18 cm (Fig. 2). Males tended to mature at a slightly larger size, a few at 17 cm, 50% at about 17 cm, and all at 23 cm. A lack of substantial numbers of young fishes made it difficult to estimate first and 50% maturity ages. However, it would appear that a few fish mature at about 8-9 years old, 50% of both males and females are mature at about 10-12 years old, and most are mature by 15-17 years old (Fig. 3). Sebastes ensifer maturation rates were similar, with a few females mature at 12 cm, 50% at about 15 cm, and all mature at 24 cm (Fig. 3). Similarly, a few male S. ensifer were mature at 12 cm, 50% at about 16 cm, and all were mature at 23 cm. Among females, this corresponded to a few fish maturing at as young as perhaps 5 years old, 50% at about 8-10 years old and all being mature at 16 years old. Maturation ages for males were similar as a few were mature at 6 years, 50% were mature at about 10 years, and all were mature in their mid-20s. For both species, we note that assessing whether males were mature was, in a number of instances, particularly problematic.

Both S. simulator and S. ensifer released larvae between at least January and July (Table 5). It is likely that parturition for both species peaks in late winter and early spring. We note that the parturition season for S. simulator might extend further into the summer, but we were unable to capture specimens in August. The gonadosomatic indices for S. simulator reflect this pattern with maximum values peaking in February and March (Fig. 4). Gonadosomatic indices for S. ensifer are found in Love et al. (1990). Sebastes simulator females produced between 9,980 and 68,995 eggs within a season. Maximum egg production of S. ensifer was somewhat lower, ranging from 10,042 and 38,900. For both species, the relationship between length and egg production assumed a power function (Fig. 5). We saw no evidence of multiple brooding, where a female releases larvae two or more times per season. In previous research, we did observe multiple brooding in S. ensifer (Love et al. 1990). We found that S. simulator preyed primarily on benthic-oriented prey; crabs dominated their diets. By comparison, S. ensifer preyed mostly on water column prey, primarily euphausiids and copepods (Fig. 6).

In the northeast Pacific, growth rates among rockfish species are variable. At the extremes, some species grow quite slowly (K = 0.03, S. borealis; K = 0.04, S. ruberrimus and S. rufus) and some, primarily dwarf, species grow considerably faster (i.e., K = 0.5 S. semicinctus, S. emphaeus) (summarized in Love 2011). At least male S. simulator and both genders of S. ensifer grow at rates mid-range between these two extremes.

There were no previous growth rate studies of S. simulator. However, Chen (1971) presented an age-length relationship for S. ensifer (genders combined) (Fig. 7) based on reading whole otoliths as opposed to the sectioned ones we utilized. Previous research with rockfishes has shown that ageing younger individuals using whole otoliths is reasonably accurate. In older fish, however, using whole otoliths often tends to underestimate age at length [i.e., S. alutus (Beamish 1979); S. rosaceus in Lea et al. (1999) compared to Fields (2016)].

The subgenus Sebastomus is of relatively recent origin having evolved around 2.5 million years ago (Hyde and Vetter 2007) and it is interesting to note that a number of life history traits seem to have been retained among the various species. For instance, with one exception, throughout the Sebastomus of the northeast Pacific and Gulf of California, the maximum age a species attains tends to be correlated with that species' maximum size (data from Love et al. 2002; Yamanaka et al. 2005; Benet et al. 2009; Love 2011; Fields 2016, and current data) (Fig. 8). Sebastes helvomaculatus is an exception as, despite its small maximum size, the species lives to at least 87 years, far longer than even its much larger congeners. Sebastes helvomaculatus is the only northern member (as defined by Love et al. 2002) of the subgenus. Love et al. (2002) noted that, almost without exception, within the northeastern Pacific rockfishes the more northerly species tend to live longer than congeners more typical of southerly waters. Parturition seasons are remarkably similar within the northeastern Pacific Sebastomus (these seasons are unknown in species endemic to the outer coast of Baja California, Gulf of California, or southern Hemisphere) (Fig. 9). Perhaps without exception (note that data on S. eos is very limited), the parturition season is long, commencing during the winter (between December and February) and extending well into the summer and perhaps into the early fall. Compared to other northeastern Pacific rockfishes, these seasons are relatively long (Love et al. 1990, 2002; Love 2011). Among subgenera, only members of the subgenus Sebastodes (i.e., S. goodei, S. jordani, and S. paucispinis) release larvae over as extended a period (Love et al. 1990, Love 2011).


We thank Bill Lenarz for providing some of the life history analyses. Brian Sidlaukas identified a Sebastes rosaceus from the Oregon State Fish Collection for us. This research was supported by the National Aeronautics and Space Administration Biodiversity and Ecological Forecasting program (NASA Grant NNX14AR62A), the Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM award MC15AC00006) and NOAA in support of the Santa Barbara Channel Biodiversity Observation Network.

Literature Cited

Beamish, R.J. 1979. New information on the longevity of Pacific ocean perch (Sebastes alutus). J. Fish. Res. Bd. Can. 36:1396-1400.

Bradburn, M.J., A.A. Keller, and B.H. Horness. 2011. The 2003 to 2008 U.S. West Coast bottom trawl surveys of groundfish resources off Washington, Oregon, and California: estimates of distribution, abundance, length, and age composition. NOAA Tech. Mem. NMFS-NWFSC-114.

Chen, L.C. 1971. Systematics, variation, distribution, and biology of rockfishes of the subgenus Sebastomus (Pisces, Scorpaenidae, Sebastes). Bull. Scripps Inst. Oceanog. Vol. 18.

Echeverria, T. and M. Love. 2002. Sebastes rosaceus. Pp. 243-245 in The Rockfishes of the Northeast Pacific. (M.S. Love, M. Yoklavich, and L. Thorsteinson, eds.) University of California Press.

Eschmeyer, W.N. and E.S. Herald. 1983. A Field Guide to Pacific Coast Fishes of North America from the Gulf of Alaska to Baja California. Houghton Mifflin.

Fields, R.T. 2016. Spatial and temporal variation in rosy rockfish (Sebastes rosaceus) life history traits. Masters Thesis, California State University Monterey Bay

Hyde, J.R. and R.D. Vetter. 2007. The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier). Mol. Phylo. Evol. 44:790-811.

Lea, R.N., R.D. McAllister, and D.A. VenTresca. 1999. Biological aspects of nearshore rockfishes of the genus Sebastes from central California with notes on ecologically related sport fishes. Calif. Dep. Fish Game Fish Bull. 177.

Leon-Castro, H., G. Ruiz-Campos, J. Alanis Garcia, and O.A. Pedrin-Osuna. 1993. Escorpenidos (Pisces, Scorpaenidae) de Isla Guadalupe, Baja California. Pp. 319-327 in Biodiversidad marina y costera de Mexico. (S.I. Salazar-Vallejo and N. E. Gonzalez, eds.) Com. Nal. Biodiversidad y CIQRO, Mexico.

Love, M.S. 2011. Certainly More Than You Want to Know About the Fishes of the Pacific Coast. Really Big Press, Santa Barbara, CA.

--, M. Yoklavich, and L. Thorsteinson. 2002. The Rockfishes of the Northeast Pacific. University of California Press, Berkeley, CA.

--, P. Morris, M. McCrea, and R. Collins. 1990. Life history aspects of 19 rockfish species (Scorpaenidae: Sebastes) from the southern California Bight. NOAA Tech. Rep. NMFS 87.

Mecklenburg, C.W., T.A. Mecklenburg, and L.K. Thorsteinson. 2002. Fishes of Alaska. American Fisheries Society.

Miller, D.J. and R.N. Lea. 1972. Guide to the Coastal Marine Fishes of California. Calif. Dep. Fish Game Fish Bull. 157.

Phillips, J.B. 1957. A review of the rockfishes of California. Calif. Dep. Fish Game Fish Bull. 104.

Pinkas, L., M.S. Oliphant, and I.L.K. Iverson. 1971. Food habits of albacore, bluefin tuna, and bonito in California waters. Calif. Fish Game, Fish Bull. 152.

Rocha-Olivares, A. 1998. Molecular evolution, systematics, zoogeography and levels of intraspecific genetic differentiation in the species of the antitropical subgenus Sebastomus, Sebastes (Scorpaeniformes, Teleostei) using mitochondrial DNA sequence data. Ph.D. thesis, University of California, San Diego.

--, C.A. Kimbrell, B.J. Eitner, and R.D. Vetter. 1999. Evolution of the mitochondrial cytochrome b gene sequence in the species-rich genus Sebastes (Teleostei; Scorpaenidae) and its utility in testing the monophyly of the subgenus Sebastomus. Mol. Phylogenet. Evol. 11:426-440.

Snytko, V A. 1986. New distribution records of rockfishes of the subfamily Sebastinae in the northern Pacific Ocean. J. Ichthyol. 26:124-130.

Venerus, L., L. Villanueva Goila, M.C. Sueiro, and N.D. Bovcon. 2016. Length-weight relationships for two abundant rocky reef fishes from Northern Patagonia, Argentina: Sebastes oculatus Valenciennes, 1833 and Pinguipes brasilianus Cuvier, 1829. J. Appl. Ichthyol. 32:1347-1349.

--, J.E. Ciancio, C. Riva-Rossi, E.A. Gilbert-Horvath, A.E. Gosztonyi, and J.C. Garza. 2013. Genetic structure and different color morphotypes suggest the occurrence and bathymetric segregation of two incipient species of Sebastes off Argentina. Naturwissenschaften 100:645-658.

Wyllie Echeverria, T. 1987. Thirty-four species of California rockfishes: maturity and seasonality of reproduction. Fish. Bull. 85:229-240.

Yamanaka, K.L. 2005. Data report for the research cruise onboard the CCGS John P Tully and the F/V Double Decker to Bowie Seamount and Queen Charlotte Islands July 31st to August 14th 2000. Can. Data Rep. Fish. Aquat. Sci. 1163.

Milton S. Love, * Merit McCrea, and Li Kui

Marine Science Institute, University of California, Santa Barbara, California 93106

* Corresponding author:

We thank Bill Lenarz for providing some of the life history analyses. This research was supported by the National Aeronautics and Space Administration Biodiversity and Ecological Forecasting program (NASA Grant NNX14AR62A), the Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM award MC15AC00006) and NOAA in support of the Santa Barbara Channel Biodiversity Observation Network.

Caption: Fig. 1. Von Bertalanffy growth curves of female and male S. simulator and S. ensifer, including direct observation data points.

Caption: Fig. 2. Predicted proportion of mature female and male S. simulator and S. ensifer at length (solid lines) and observed proportion mature (by 1 cm length bins) (circles).

Caption: Fig. 3. Predicted proportion of mature female and male S. simulator and S. ensifer at age (solid lines) and observed proportion mature (by 1 cm length bins) (circles).

Caption: Fig. 4. Seasonal changes in the gonadosomatic indices of female Sebastes simulator.

Caption: Fig. 5. Fecundity patterns of Sebastes simulator and S. ensifer.

Caption: Fig. 6. Index of Relative Importance of food items eaten by Sebastes simulator and S. ensifer.

Caption: Fig. 7. A comparison of the age-length relationship of S. ensifer (both genders combined) between data from this paper (solid line representing von Bertalanffy growth equation) and data from Chen (1971) (squares).

Caption: Fig. 8. The relationship between maximum length and maximum age in the subgenus Sebastomus. The relationship between the two variables was derived from an analysis of all species for which data were available (S. chlorostictus, S. constellatus, S. ensifer, S. exsul, S. lentiginosus, S. rosaceus, S. rosenblatti, S. simulator, S. spinorbis, and S. umbrosus) except for S. helvomaculatus.

Caption: Fig. 9. Parturition season of the members of the rockfish subgenus Sebastomus living in the northeast Pacific.
Table 1. Species of the subgenus Sebastomus including maximum
lengths, geographic ranges, and depth ranges. LACM = Los Angeles
County Museum of Natural History; SIO = Scripps Institution of
Oceanography Marine Invertebrate Collection; CAS = California
Academy of Science; RACE = Resource Assessment and Conservation
Engineering Division, NOAA; SAIAB = South African Institute for
Aquatic Biodiversity; SCCWRP = Southern California Coastal Water
Research Project.

Sebastes capensis (Gmelin, 1789). Cape Redfish. 40 cm (15.7 in) TL
(SAIAB 18249). Argentina, Falkland Islands, Trista de Cunha Island,
and southern Africa (Venurus 2013). 4-223 m (13-731 ft) (min.:
SAIAB 18242; max.: SAIAB 74972). Historically, this species has
been confused with S. oculatus. Based on recent research (Venurus
2013), fish from at least Peru and Chile, once thought to be S.
capensis, are now assumed to be S. oculatus. Therefore, length and
depth records of "S. capensis" from the southeastern Pacific are
not valid. In addition, S. capensis and S. oculatus co-occur off
Argentina and there has likely been confusion in identifying the
two species off that coast. Thus, the size and depth data we
present are taken from museum records of individuals living in
areas where only S. capensis is known to exist.

Sebastes chlorostictus (Jordan & Gilbert, 1880). Greenspotted
Rockfish. 53.4 cm (21 in) FL (D. Pearson, pers. comm. to M. Love).
Vancouver Island (49[degrees]04'N, 126[degrees]50'W) (Canada
Department of Fisheries and Oceans, unpubl. data) to at least Isla
Cedros (28[degrees]22.62'N, 115[degrees]17.46'W), central Baja
California (collected by M. L.) or perhaps to southern Baja
California (25[degrees]32'N, 113[degrees]04'W; Snytko 1986) but
without documentation. At depths of 30-379 m (98-1,243 ft) (min.:
M. Love, unpubl. data; max.: RACE).

Sebastes constellatus (Jordan & Gilbert, 1880). Starry Rockfish. To
46 cm (18 in) TL (Phillips 1957). Off the mouth of the Russian
River, northern California (CAS 26375) to off Todos Santos
(23[degrees]24'N, 110[degrees]14'W), southern Baja California (J.
Snow, pers. comm. to M. Love). Tentatively identified from
photographs taken at Rocas Alijos (about 25[degrees]N,
115[degrees]45'W; R.N. Lea, pers. comm. to M. Love). At depths of
15-274 m (50-900 ft) (min.: D. Jehl, pers. comm. to M. Love; max.:
Miller and Lea 1972).

Sebastes ensifer Chen, 1971. Swordspine Rockfish. To 30.5 cm (12
in) TL (Miller and Lea 1972). San Francisco, northern California
(Miller and Lea 1972) to Banco Ranger (28[degrees]25'N,
115[degrees]32'W), central Baja California (Chen 1971). At depths
of 50-433 m (164-1,420 ft) (min.: M. Love, unpubl. data; max.:
Miller and Lea 1972).

Sebastes eos (Eigenmann & Eigenmann, 1890). Pink Rockfish. To 56 cm
(22 in) TL (Phillips 1957). Central Oregon (44[degrees]33'N; RACE)
to southern Baja California (27[degrees]01.2'N, 114[degrees]16.2'W)
(SIO 65-203) or perhaps to 25[degrees]24'N, 113[degrees]01'W
(Snytko 1986), but without documentation, and Isla Guadalupe,
central Baja California (Love et al. 2002). At depths of 45-366 m
(150-1,200 ft) (min.: Allen et al. 2002 (1); max.: Miller and Lea

Sebastes exsul Chen, 1971. Gulf Rockfish. To 31 cm (12.1 in) (Love
et al. 2002). Gulf of California in the vicinity of Bahia de los
Angeles (Love et al. 2002). At depths of 110-213 m (363-699 ft)
(min.: Love et al. 2002; max.: SIO 06-266).

Sebastes helvomaculatus Ayres, 1859. Rosethorn Rockfish. To 43 cm
(16.9 in) TL (Yamanaka 2005). Western Gulf of Alaska east of
Sitkinak Island (Mecklenburg et al. 2002) to at least about
U.S.-Mexican border (32[degrees]26.1'N, 119[degrees]06.6'W) (SIO
64-988) or perhaps to Banco Ranger (28[degrees]33'N,
115[degrees]25'W), central Baja California (Snytko 1986) but
without documentation. At depths of 16-1,145 m (52-3,756 ft) (min.:
Canada Department of Fisheries and Oceans, unpubl. data; max.:
Ramsey et al. 2002 (2)).

Sebastes lentiginosus Chen, 1971. Freckled Rockfish. To about 23 cm
(9 in) TL (Miller and Lea 1972). Point Conception, central
California (34[degrees]36'N; RACE) to southern Baja California
(25[degrees]37'N, 113[degrees]24'W) (LACM 42178.004). At depths of
22-168 m (73-551 ft) (min.: M. L., unpubl. data; max.: SIO 48-196),
reported without documentation to 290 m (951 ft) (Snytko 1986).

Sebastes notius Chen, 1971. Guadalupe Rockfish or Southern
Rockfish. To 21.9 cm (8.6 in) SL (Chen 1971). This species has been
collected at two sites: Isla Guadalupe (29[degrees]N; Chen 1971),
central Baja California and in the vicinity of Banco del Tio Sam
(Uncle Sam Bank; 25[degrees]35'N), southern Baja California
(Rocha-Olivares 1998). At depths of 165-250 m (541-820 ft; Chen

Sebastes oculatus Valenciennes, 1833 (in Cuvier and Valenciennes,
1833). Patagonian Rockfish or Patagonian Redfish. 40.8 cm (16 in)
TL (Venerus et al. 2016). Peru, Chile, Argentina, and Falkland
Islands (Venurus et al. 2013). At least 30-271 m (98-899 ft) and
perhaps to 665 m (2,181 ft) (Venerus et al. 2013). Light and dark
color morphotypes, perhaps incipient species, live off Argentina
(Venurus et al. 2013).

Sebastes rosaceus Girard, 1854. Rosy Rockfish. To 36 cm (14 in) TL
(Eschmeyer and Herald 1983). Cobb Seamount (46[degrees]44'N,
130[degrees]47'W) (Oregon State Ichthyology Collection 15632) to
Bahia Tortugas (27[degrees]30'N, 114[degrees]50'W), southern Baja
California (Phillips 1957). A report from the Strait of Juan de
Fuca, Washington (Echeverria and Love 2002) is undocumented. At
depths of 7-328 m (24-1,076 ft) (min.: SCCWRP; max.: Bradburn et
al. 2011).

Sebastes rosenblatti Chen, 1971. Greenblotched Rockfish. To 54 cm
(21.3 in) TL (Love et al. 1990). Point Delgada, northern California
(40[degrees]04'N; RACE) to Banco Ranger, central Baja California
(Chen 1971). At depths of 55-491 m (180-1,610 ft) (min.: M. Love,
unpubl. data; max.: Wilkins et al. 1998 (3)).

Sebastes simulator Chen, 1971. Pinkrose Rockfish. Largest
documented individual 34.5 cm (13.6 in) TL (SIO 79-73); one
undocumented record at 42.1 cm (16.4 in) TL (Leon-Castro et al.
1993). Carmel Submarine Canyon, central California (R. N. Lea,
pers. comm. to M. Love) or perhaps to Eureka, northern California
(D. Pearson, pers. comm. to M. Love) to Punta Colnett
(30[degrees]53'N, 116[degrees]30'W), northern Baja California (M.
Love, unpubl. data) and Isla Guadalupe, central Baja California
(Leon-Castro et al. 1993). At depths of 99-450 m (325-1,476 ft)
(min.: Eschmeyer and Herald 1983; max.: Chen 1971).

Sebastes spinorbis Chen, 1975. Spiny-eye Rockfish. To 34.4 cm (13.4
in) (Love et al. 2002). Gulf of California in the vicinity of Bahia
de los Angeles (Love et al. 2002). 130-213 m (429-700 ft) (min.:
Love et al. 2002; max.: SIO 06-266).

Sebastes umbrosus (Jordan & Gilbert, 1882). Honeycomb Rockfish. To
28.5 cm (11.2 in) TL (M. Love, unpubl. data). Point Pinos, central
California (Miller and Lea 1972) to Rocas Alijos (24[degrees]57'N,
15[degrees]44'W), southern Baja California (LACM 37658.002). At
depths of 18-270 m (60-891 ft) (min.: M. Love, unpubl. data; max.:
Leon-Castro 1993).

(1) Allen, M.J., A.K. Groce, D. Diener, J. Brown, S.A. Steinert, G.
Deets, J.A. Noblet, S.L. Moore, D. Diehl, E.T. Jarvis, V.
Raco-Rands, C. Thomas, Y. Ralph, R. Gartman, D. Cadien, S.B.
Weisberg, and T. Mikel. 2002. Southern California Bight 1998
Regional Monitoring Program: V. Demersal fishes and megabenthic
invertebrates. Southern California Coastal Water Research Project.
Westminster, California.

2) Ramsey, T.B., T.A. Turk, E.L. Funk, J.R. Wallace, B.H. Horness,
A.J. Cook, K.L. Bosley, D.J. Kamikawa, L.C. Hufnagle, and K. Piner.
2002. The 1999 Northwest Fisheries Science Center Pacific West
Coast upper continental slope trawl survey of groundfish resources.

(3) Wilkins, M.E., M. Zimmermann, and K.L. Weinberg. 1998. The 1995
Pacific West Coast bottom trawl survey of groundfish resources:
Estimates of distribution, abundance, and length and age
composition. NOAA Tech. Mem. NMFS-AFSC-89.

Table 2. Conversions between standard, fork, and total lengths for
Sebastes simulator and S. ensifer.

Sebastes simulator

                                Intercept   Coefficient
Dependent   Independent    n        a            b
variable     variable

FL              SL        115     1.324        1.133
TL              SL        115     1.424        1.152
SL              FL        115    -0.788        0.866
TL              FL        115     0.141        1.013
SL              TL        115    -0.835        0.851
FL              TL        115     0.009        0.980

Sebastes simulator

Dependent   [R.sup.2]     F      Significance

FL           0.9817     6,119       <0.001
TL           0.9810     5,827       <0.001
SL           0.9817     6,119       <0.001
TL           0.9937     18,090      <0.001
SL           0.9810     5,827       <0.001
FL           0.9937     18,090      <0.001

Sebastes ensifer

Dependent   Independent         Intercept   Coefficient
variable     variable      n        a            b

FL              SL        171     0.846        1.127
TL              SL        173     0.879        1.160
SL              FL        171    -0.393        0.868
TL              FL        171     0.278        1.015
SL              TL        173    -0.540        0.850
FL              TL        171    -0.073        0.974

Sebastes ensifer

variable    [R.sup.2]     F      Significance

FL           0.9706      7825       <0.001
TL           0.9871     13,210      <0.001
SL           0.9706     7,825       <0.001
TL           0.9896     16,120      <0.001
SL           0.9871     13,210      <0.001
FL           0.9896     16,120      <0.001

Table 3. Parameters of the von Bertalanffy equation for Sebastes
simulator and Sebastes ensifer from southern California.

Species     Sex      [L.sub.[infinity]]    SE       K      SE

simulator   female         42.612         6.332   0.026   0.008
            male           27.396         0.260   0.094   0.004
ensifer     female         22.098         0.304   0.120   0.010
            male           20.492         0.258   0.126   0.011

Species     Sex      [t.sub.0]    SE     observed age (yr)

simulator   female    -8.092     1.757          32
            male       0.108     0.297          39
ensifer     female    -1.674     0.574          38
            male      -2.171     0.616          37

Table 4. Condition factors of S. simulator from the southern
California Bight. Significant differences are marked with an
asterisk. N = number of individuals samples, K = Fulton's condition
factor, U = output of the Mann-Whitney U test, and P = probability.

                N     K       U         P
December-May    54   1.34    232    <0.0001 *
June-November   23   1.46
December-May    32   1.32    109    0.0002 *
June-November   18   1.44
All Seasons
Males           77   1.38   1,683    0.2334

Table 5. Reproductive stages, by month, of female Sebastes simulator
and Sebastes ensifer.

Sebastes simulator   Resting   Maturing   Uneyed   Eyed Spent

  January               1         5         1          32
  February              5         2         2
  March                 6         4
  April                 2         2         1          2
  May                   4         5         3
  June                  3         1         4          52
  July                  5         1         2          1
  August             No Data
  September             8
  October            No Data
  November              2         7
  December              8         1
Sebastes ensifer
  January               7         2         1
  February              8         6         6          2
  March                 7         8         3          5
  April                 1         2         4          6
  May                   6         1         1          1
  June                  7         1
  July                  1         1
  August                5
  September             6
  October            No Data
  November              2         6
  December              3         1
COPYRIGHT 2018 Southern California Academy of Sciences
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Love, Milton S.; McCrea, Merit; Kui, Li
Publication:Bulletin (Southern California Academy of Sciences)
Article Type:Report
Date:Apr 1, 2018
Previous Article:Late Quaternary Chorus Frog (Pseudacris) from the Channel Islands, California.
Next Article:Spots on Sides of Giant Sea Bass (Stereolepis gigas Ayres, 1859) are Likely Unique to Each Individual.

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |