Printer Friendly

Applications of the dot probe task in attentional bias research in eating disorders: A review.

@@Recent years have seen an increasing interest in the cognitive approach to eating disorders, which postulates that patients selectively attend to information associated with eating, body shape, and body weight. The unreliability of self-report measures in eating disorders due to strong denial of illness gave rise to experimental studies inspired by research into anxiety disorders involving attentional bias, with the prevalent method being a modified color-naming Stroop task. Unfortunately, that tool was shown to exhibit many limitations, especially in terms of attentional bias measurement. Thus, researchers started to seek alternative methods of evaluating attention in persons with eating disorders. Along with the Stroop test and the Posner paradigm, one of the most frequently used methods is the dot probe task. This paper presents the dot probe protocol as well as the rationale underpinning its use, including its advantages and drawbacks. Furthermore, a modification of the task is proposed to enable the assessment of all components of attentional bias in patients with eating disorders. The paper also discusses practical implications of the modification for the treatment of these patients. For several years now there has been an increasingly widespread use of so-called attentional training employing, amongst others, the dot probe task, which may be modified for the purpose of reducing or eliminating of attentional biases in patients with eating disorders. Unfortunately, due to the absence of studies providing a reliable account of all types of attentional bias in eating disorders, this field of research lags considerably behind anxiety research and does not enable therapeutic applications.

Introduction

The issue of treatment of eating disorders, such as anorexia nervosa and bulimia nervosa, continues to be very contentious. Recent years have seen a surge of interest in the cognitive approach, in which patients evaluate themselves almost exclusively in terms of their body shape, weight, eating habits, and their ability to control them. Jones, Leung, and Harris (2007) argue that these are "essentially cognitive disorders in which the main cognitive disturbance is manifested in a characteristic set of attitudes and values concerning body weight and shape" (Jones et al., 2007, p. 157). One of the cognitive processes that may perpetuate these disorders is selective attention. According to cognitive theories of eating disorders, patients selectively attend to material related to eating and body appearance (Vitousek & Hollon, 1990; see also Johansson, 2006; Dobson & Dozois, 2004). In this field, the most promising avenues are experimental studies into selective attention, including attentional bias, as in the case of patients with eating disorders self-report instruments are unreliable due to the fact that such patients tend to deliberately distort their responses (Faunce, 2002). Therefore, studies in this field are increasingly often conducted using information processing paradigms incorporating stimuli related to food, body shape, and weight (Ainsworth, Waller, & Kennedy, 2002).

Attentional bias or attentional biases?

According to Quimet, Gawronski, and Dozois (2009), many studies have shown that attention cannot be treated as a uniform, one-dimensional construct (see also Posner, 1980), while Koster and colleagues (2006) have observed that the exact nature of attentional biases remains elusive (see also Fox et al., 2001). In particular, the specific components of attentional bias associated with threat-related stimuli are still the subject of ongoing debate (Bannerman, Milders, & Sahraie, 2010). It should be emphasized that while attentional bias linked to positive stimuli is noteworthy, it is negative stimuli that are particularly "attention grabbing" (Fox, Russo, & Dutton, 2002, p. 376; see also Pratto & John, 1991, p. 380; Morgan, Rees, & Curran, 2008, p. 1331). According to Cisler and Koster (2010), the components of attentional bias refer to its measurable characteristics (what attentional bias "looks like"). In the case of threat-related attentional bias, these authors distinguish several components, which may also be termed "phases" (Ouimet et al., 2009, p. 461) or "mental operations" (Koster et al., 2006, p. 636). The first one is facilitated attention to threat, which is the relative facility or speed with which attention is drawn toward a threat. This represents attentional orienting toward threat, and so threatening stimuli are detected faster than non-threatening ones. The second component of attentional bias is difficulty in disengaging attention away from threat, which is the degree to which a threat-related stimulus captures, attention, preventing the reorientation of attention towards a different location. Consequently, it is more difficult to disengage attention from a threatening stimulus than from a neutral one. The third component is attentional avoidance of threat, which causes attention to be preferentially allocated towards locations other than the location of a threatening stimulus (Cisler & Koster, 2010). As can be seen, researching attentional bias is non-trivial as a distinction must be made between the three components. Thus, studies of persons with eating disorders should make it possible to reveal the nature of the attentional bias of those patients upon presentation of relevant (i.e., eating-related) stimuli.

Is the Stroop test the right method of measuring attentional bias in eating disordered patients?

The paradigm most frequently used in attentional bias research involving eating disordered patients is the Stroop task (1935). The original version of the task consisted of presenting neutral words in different color inks written on large cards, often with several words per card (Faunce, 2002). Participants were first requested to name the color of the words and then read the words irrespective of their color. This task was later revised to include color words (e.g., red and green) written in either the corresponding color, e.g., the word "red" printed in red (congruent trials) or other competing colors, e.g., the word "green" printed in blue (incongruent trials) (Wells & Matthews, 1994; Dobson & Dozois, 2004; Johansson, 2006; BarHaim et al., 2007). In this version, the participants are required to ignore the meaning of the words and to name the color of each stimulus as quickly as possible (Ainsworth et al., 2002; Cisler, Bacon, & Williams, 2009; Faunce, 2002; Johansson, 2006; Cisler & Koster, 2010). Many studies have found that subjects take significantly longer to color-name the words presented in incongruent trials than in congruent ones (Wells & Matthews, 1994; Johansson, 2006). This difference is attributed to the interference effect, which is calculated as the total time taken to name the words written in incongruent colors divided by the total time for the words written in congruent ones (Dobson & Dozois, 2004).

The discovery that performance on the classical Stroop task depends on the meaning of stimuli enabled researchers to modify that task for testing information processing in emotional disorders (Ainsworth et al., 2002; Johansson, 2006; Cisler et al., 2009; see also Faunce, 2002). Modifications of the original Stroop test were developed in the 1980s and are popularly known as "emotional Stroop tasks" (Wells & Matthews, 1994; Krejtz & Scdek, 2001; Lee & Shafran, 2004; Bar-Haim et al., 2007; Asanowicz & Wolski, 2007). The new versions were meant to evaluate attentional bias in emotional disorders, such as anxiety and depression (Lee & Shafran, 2004), as well as in other psychiatric conditions, e.g., eating disorders. (Dobson & Dozois, 2004). Two new types of trials were proposed: emotional and control ones (Johansson, 2006; see also Cisler et al., 2009; Cisler & Koster, 2010; Szymura, 2007). In emotional trials, researchers manipulated the content (Dobson & Dozois, 2004) and the valence of stimuli employed (Bar-Haim et al., 2007), making the meaning of the presented words relevant to the specific concerns of the patients arising from their emotional disorder. Similarly to the classical Stroop task, in modified clinical versions of the test the subjects were asked to name the color of words linked to their psychopathology; for instance a person with arachnophobia was asked to name the color of the word "cobweb." Also in the 1980s, special versions of the Stroop test were developed to test patients with eating disorders; these are known as the "Food Stroop" (Ben-Tovim et al., 1989) and the "Body Stroop" (Channon, Hemsley, & deSilva, 1988) and include words related to food and body shape. In control trials the meaning of the presented words was neutral with respect to valence (see also Dobson & Dozois, 2004).

Although tests employing the Stroop task have shown that individuals with eating disorders tend to name the colors of words related to food and body more slowly (e.g. Faunce, 2002; Dobson & Dozois, 2004; Johansson, 2006), some researchers (e.g. Lee & Shafran, 2004) have also emphasized that this task is poorly suited for measuring attentional bias as such. First of all, it is unclear what mechanisms are responsible for the results obtained in the Stroop test. Despite the very high number of tests using the classic Stroop task, it has not been conclusively determined whether the effect is caused by differences in the relative speed of processing color vs. language (Klein, 1964), the automaticity of language use (e.g., Logan, 1980), the perceptual encoding of appropriate stimulus attributes (Dyer, 1973), or the interference related to the unequal strengths of competing processing pathways (Cohen, Dunbar, & McClelland, 1990; see also Dobson & Dozois, 2004). It is not even certain whether Williams, Mathews, and MacLeod (1996) were right in claiming that Stroop interference is indicative of attention being automatically directed toward a given type of information, e.g. related to eating, which makes the test inadequate for studying attentional bias.

Due to the numerous concerns as to the legitimacy of the Stroop task for the measurement of attentional bias, researchers started to seek other methods of exploring the relationship between attention and psychopathology (Lee & Shafran, 2004), especially in terms of assessing attentional bias (Lee & Shafran, 2008). One of the predominant objectives was to design tests that would provide more consistent results concerning threat-related attentional biases. Thus, new information processing paradigms (Shafran et al., 2007) were developed largely in response to the methodological shortcomings of the Stroop task (Shafran et al., 2007; Lee & Shafran, 2008). The most prominent of them are the Posner paradigm (Cisler et al., 2009) and the dot probe task (Ainsworth et al., 2002; Cisler et al., 2009; Cisler & Koster, 2010), which represent significant advances in the approach to attentional bias research. These modifications show an interesting evolution of methods in the quest for a tool that would be best suited for evaluating attentional bias.

While a detailed description of the Posner paradigm is beyond the scope of this paper, it should be noted that in its most widely used variant, employed by Fox and colleagues (2001), a single word (threatening or neutral) is presented on the right or left side of the screen. Immediately following the word, a target is displayed. In validly cued, or test, trials (Hoppitt & Mackintosh, 2009; Fox et al., 2002) the cue and target appear at the same location, while in invalidly cued, or control, trials (Hoppitt and Mackintosh, 2009; Fox et al., 2002) they appear in different locations (Fox et al., 2001; see also Jaskowski, 2009). This paradigm enables evaluation of attentional engagement as measured by the subjects' responses (expressed as reaction times, RTs) to valid targets and attentional disengagement as measured by their responses to invalid targets (Derakshan, Eysenck, & Myers, 2007). It is believed that faster RTs to targets on valid trials reflect attentional capture by the cue, whereas slower RTs on invalid trials indicate difficulty in disengaging attention from the cue (Bannerman et al., 2010). If the subjects respond faster only on valid trials, following negative cues as compared to valid trials containing neutral stimuli, it may be assumed that bias is linked to attention being attracted and captured by negative information. In turn, if the subjects' responses are slower in invalid trials following negative words as compared to responses on invalid trials following neutral words, this suggests that they have a problem with disengaging attention from a negative stimulus (Amir et al., 2003; Derakshan et al., 2007; Hoppitt & Mackintosh, 2009; Cisler et al., 2009; Klumpp & Amir, 2009, Bannerman et al., 2010; see also Fox, 2002; Cisler & Koster, 2010). Attentional disengagement from threat is manifested by the additional time the subject takes to respond to invalid threatening trials as compared to invalid neutral trials (Klumpp & Amir, 2009). A major criticism of the Posner trial has been voiced by Klumpp and Amir (2009), who argue that this task essentially does not measure the degree to which attention is attracted by a given stimulus, which means that it is not sensitive to vigilance effects, because trials display only one stimulus so that there is no competition for attentional resources (see also Fox et al., 2002). This implies that the Posner test can be used only for invalid trials, where the target appears in the location previously not occupied by the stimulus (Fox et al., 2002). Therefore, it is perhaps fortunate that this test has not been used for patients with eating disorders, as the results would be just as non-informative as in the case of the Stroop task.

The dot probe task

As mentioned above, researchers of attentional bias (e.g., Cisler et al., 2009; Cisler & Koster, 2010) distinguish three components of attention: vigilance/facilitated attention towards relevant cues, cue avoidance, and difficulty in disengagement from cues. In this context, the dot probe task has been shown to measure more components of attentional bias than the Stroop test, which at best records vigilance to relevant cues. This task is a modification of the Posner paradigm (1980) proposed by MacLeod, Mathews, and Tata (1986), and is particularly well-suited for testing anxiety. Differences between the dot probe and the Posner tasks include the fact that the former simultaneously presents two stimuli, which are personally relevant or threatening, while in the Posner task it is not always the case (see also Faunce, 2002; Lee & Shafran, 2004; Mogg & Bradley, 2005; Bar-Haim et al., 2007, Asanowicz & Wolski, 2007; Shafran et al., 2007; Lee & Shafran, 2008; Cisler & Koster, 2010). The dot probe task is considered by many researchers a methodologically stronger test of attentional bias than the Stroop color naming task (Placanica, Faunce, & Job, 2002; see also Lee & Shafran, 2004; Mogg & Bradley, 1998), and it is also deemed to be a superior and more direct test of allocation of attention and attentional bias (Rieger et al., 1998; Mogg & Bradley, 1998; see also Faunce, 2002).

A study of patients with anxiety disorders (MacLeod et al., 1986) showed that this procedure is sensitive to attentional biases (Rieger et al., 1998) and can determine whether the subject's attention is directed towards or away from a given class of stimulus words. This is achieved by forcing the subjects to simultaneously process two distinct stimuli rather than different attributes of one stimulus, as in the Stroop task. Due to the fact that in this task a pair of stimuli, such as words, are presented separately, reaction times to the probes that replace them (one at a time) show whether the subject's attention is preferentially directed towards or away from the stimuli.

The dot probe task protocol and rationale

In the dot probe task, subjects are seated in front of a computer screen with their chins securely positioned on a chin rest. They are asked to stare at a fixation cross at the center of the screen (the cross was absent in the original version of the task), and then a pair of stimuli (words, facial expressions, or pictures) are displayed simultaneously near the fixation cross, approx. 5 cm apart (one above and the other below it, or one to the left and the other to the right) for a certain amount of time, which is usually 500 ms (Cisler et al., 2009). Subsequently, a neutral item known as a probe (e.g., a dot, asterisk, or letter) is presented at the location of one of the stimuli. Participants are requested to indicate the location of the probe (i.e., signal whether the probe has replaced the top, bottom, left, or right stimulus) using either a keyboard (pressing two differently colored buttons) or a special response box with two buttons, also differently colored. Latency is measured automatically by the computer (MacLeod et al., 1986; Rieger et al., 1998; Aisnworth et al., 2002; Fox et al., 2002; Asanowicz & Wolski, 2007; Frewen et al., 2008; Cisler et al., 2009; Klumpp & Amir, 2009; Ouimet et al., 2009; Bannerman et al., 2010; Cisler & Koster, 2010).

The methodological rationale underpinning this measure of attention allocation (Fox et al., 2002) is that that the subjects' reaction time will vary between trials partly as a function of the stimulus on which they first focus their attention (Frewen et al., 2008). It is expected that the subjects will detect more quickly those probes that are displayed in the same spatial locations as the stimuli they focused on as opposed to locations they did not focus on (Posner, Snyder, & Davidson, 1980; Navon & Margalit, 1983; Faunce, 2002; Lee & Shafran, 2004; Mogg & Bradley, 2005; Frewen et al., 2008; Shafran et al., 2007; Lee & Shafran, 2008) because of the additional time it takes for the subject to shift his or her attention toward the location of the probe in the latter case (Frewen et al., 2008). In other words, response latency to the probe will be reduced when it appears in an attended rather than unattended region of the computer screen (Mogg & Bradley, 2005). It is thought that reaction times to the probe are faster if at the time of probe display the subject's attention is already allocated to the location of the probe (Koster et al., 2004). For instance, if the subject's attention was initially oriented towards a negative word (i.e., the subject exhibits a negative attentional bias), the reaction time should be shorter if the probe appears in the region where that word was displayed. On the other hand, if the subject's attention was oriented away from the negative word, then the reaction time should be shorter if the probe is displayed in the location previously occupied by a positive word (Bar-Haim et al., 2006; Bar-Haim et al., 2007; Hoppit & Mackintosh, 2009).

In the "emotional" variant of the task, subjects are presented with a pair of words that differ in their emotional valence (threatening vs. neutral, or positive vs. negative), usually for 100-1250 ms (MacLeod et al., 1986; Mogg & Bradley, 2005; see also Asanowicz & Wolski, 2007; Frewen et al., 2008, Ouimet et al., 2009). Later versions of the dot probe task included masked exposure conditions with word pairs presented for 14 ms. It should be noted that over time the range of stimuli was expanded to include schematic facial expressions (e.g., Bradley et al., 1999; see also Mogg & Bradley, 2005) and pictures (Asanowicz & Wolski, 2007; Frewen et al., 2008; see also Shafran et al., 2008). Researchers typically use two types of stimuli - neutral and threat-related (Fox et al., 2001; Bar-Haim et al., 2007, Derakshan et al., 2007, Klumpp & Amir, 2009; see also Koster et al., 2004; Lee & Shafran, 2004; Szymura, 2007).

Attentional biases are diagnosed based on differences in reaction times towards probes replacing threatening and neutral stimuli in congruent and incongruent trials, respectively (Cisler et al., 2009; Cisler & Koster, 2010). Shorter RTs in congruent trials show that the individual had attended to the location where the probe was displayed (suggesting vigilance to threat), whereas longer RTs in incongruent trials indicate that he or she detected the probe by shifting attention to a previously unattended location (suggesting difficulty with attentional disengagement from threat). In turn, shorter RTs in incongruent trials than in congruent ones indicate that the individual avoids threatening stimuli. This interpretation was corroborated by reports that probe detection latencies are correlated with eye shifts between the two regions of the computer screen (Bradley, Mogg, & Millar, 2000; see also Ouimet et al., 2009) (Figure 1).

Advantages of the dot probe task

Thanks to the fact that participants performing the dot probe task respond to a neutral probe, latency is not affected by any emotional reaction to that probe or some general arousal. An additional advantage of this paradigm is the ability to manipulate the time interval between the presentation of the stimulus pair and the probe (i.e., stimulus onset asynchrony, SOA, also known as the Inter-Stimulus Interval, ISI), which allows for exploring the time course of attentional allocation (Bar-Haim et al., 2007). When exposure time is very short, then attentional orientation towards or away from a threat is probably unconscious, while in the case of longer exposure times this orientation may be linked to conscious processing. The dot probe task is also advantageous in that it enables measurement of whether attention is preferentially directed toward certain stimuli or perhaps the stimuli are avoided (Placanica et al., 2002).

Reservations as to what kind of attentional bias(es) the dot probe task actually measures

Despite the fact that some studies using the Stroop test on non-clinical and clinical groups, and especially on anxious individuals (e.g. Bradley et al., 1998; see also MacLeod et al., 1986), showed the procedure to be sensitive to attentional biases (MacLeod et al., 1986; Rieger et al., 1998), other studies have called this into question (Koster et al., 2004). The original interpretations of the patterns obtained with the dot probe task have been challenged (Fox et al., 2002; see also Klumpp & Amir, 2009). These concerns have not been allayed even by the study of Bradley and colleagues (2000), who reported that subjects exhibiting eye movements towards threatening faces also responded faster to probes that replaced those faces as compared to non-threatening faces. According to Bradley et al. (2000), these results seem to confirm that anxious individuals (in contrast to nonanxious ones) are characterized by attentional vigilance to threat faces (see also Klumpp & Amir, 2009).

However, their argument has been criticized on three main grounds.

First criticism

First, it has been observed that in dot-probe trials where the probe is displayed at the location of a threat-related stimulus, short reaction times (positive attentional bias manifested as the difference in RTs between congruent and incongruent trials, e.g. Bar-Haim et al., 2007) may be linked to either vigilance to threat or difficulty in disengaging attention from it (Bar-Haim et al., 2007; see also Koster et al., 2004). The Posner paradigm appears to be better suited for investigation of the disengagement mechanism: since a threat-related or neutral stimulus is displayed briefly in one of two possible locations followed by a probe in one location, slower responses on invalidly cued trials are interpreted as difficulty in disengagement from threat (Fox et al., 2002; Koster et al. 2004; Bar-Haim et al., 2007). Even though according to Bar-Haim et al. (2007) the task was intended to determine the relative proportion of two components of attention, namely engagement and disengagement, it actually only identifies disengagement and is not sensitive to vigilance effects, because only one stimulus precedes the probe on each trial and there is no competition for attentional resources (Fox et al., 2002; Bar-Haim et al., 2007; Klumpp & Amir, 2009). Thus, it may be concluded that while the dot probe task does detect the presence of attentional biases, it cannot determine the specific type of bias observed (Cisler et al., 2009), and in particular it cannot distinguish between vigilance and difficulty in disengagement from threat (Koster et al., 2004).

In response to the limitations of the dot probe task and the Posner paradigm, Koster et al. (2004) proposed a modification of the dot probe task observing that the previous versions of the dot probe task lacked a neutral baseline (neutral-neutral stimuli) with which to compare the reaction times of congruent and incongruent trials. In the original version of the test, RTs were compared only between the latter two types of trials. However, if a baseline were used, RTs on congruent and incongruent trials could be compared with it to check for vigilance to threat and difficulty in attentional disengagement from threat, respectively (Cisler et al., 2009; Cisler & Koster, 2010; see also Shane & Peterson, 2007; Cisler et al., 2009; Klumpp & Amir, 2009). Koster et al. (2004) proposed two methods of analyzing data obtained in tests using the modified dot probe task: a comparison of RTs on congruent and incongruent trials and a comparison of RTs between trials displaying two neutral stimuli and those displaying one neutral and one threatening stimulus. The first analysis determines whether subjects engage with the threatening stimulus (subtraction of RTs on congruent trials from those on incongruent trials gives a positive bias score) or avoid that stimulus (subtraction of RTs on congruent trials from those on incongruent trials gives a negative bias score). The other analysis shows whether a positive attentional bias score reflects vigilance to threat or difficulty in disengagement from threat. Vigilance should yield shorter RTs on congruent trials than on neutral-neutral baseline trials (the difference obtained by subtracting RTs on baseline trials from those on congruent trials should be negative), while difficulty in disengagement from threat should result in longer reaction times on incongruent trials than on baseline trials (the difference obtained by subtracting reaction times on baseline trials from reaction times on incongruent trials should be positive). In the latter case, the longer reaction times on incongruent trials result from the additional time needed to shift attention from a threatening location to a neutral one (Koster et al., 2004; see also Koster et al., 2006) (Figure 2).

Results from studies employing the modified dot probe task have shown that RTs on trials containing a pair of neutral stimuli do not differ from RTs on congruent trials, which suggests that threat-related stimuli do not lead to attentional facilitation. In turn, RTs on neutral-neutral trials are shorter than on incongruent trials, which corroborates difficulty in attentional disengagement from threat (Koster et al., 2004; Koster et al., 2006).

Second criticism

Secondly, it seems that response latencies in the dot probe task provide only a snapshot of the distribution of subjects' attention, with faster responses to probes displayed in the attended location relative to the unattended location (Cooper & Langton, 2006, p. 1322; see also Koster et al., 2004; Mogg & Bradley, 2005; Bar-Haim et al., 2006, 2007; Posner et al., 1980; Navon & Margalit, 1983).

The problem may be elucidated by studying the components of attentional bias using variable stimulus presentation durations (different time intervals between the presentation of a pair of stimuli and a probe, also known as stimulus onset asynchrony). Ouimet et al. (2009; see also Fox et al., 2001) discuss the temporal characteristics of attentional components; according to them attentional orienting occurs at <30 ms, engagement at 30-500 ms, disengagement at 500-1000 ms, and avoidance at >1000 ms. Koster et al. (2004) note that attentional orientation can be studied at <200 ms (e.g., in the dot probe task pictures should not be displayed for more than 200 ms). Calvo and Avero (2005) emphasize that the nature of attentional bias changes over time in the case of processing of emotional pictures. Indeed, research has revealed that a specific component of the observed attentional bias may be the function of exposure time, or stimulus onset asynchrony (this parameter makes it possible to elucidate the time course of attentional allocation, Bar Haim et al., 2007).

Third criticism

Third, Klumpp and Amir (2009) suggest that if a pair of stimuli is displayed for a longer period of time, more than one shift of attention between them may occur. In their objections to the adopted dot probe methodology, Asanowicz and Wolski (2007) argue that at a SOA of 500 ms subjects' reaction times do not reflect the initial orienting toward affective stimulation, because the processes of attentional disengagement, shift, and engagement with a new object proceed much faster, and their direction and strength may change within that time (see also Posner, 1994). Therefore, it seems that at a SOA of 500 ms the dot probe task does not record processes linked to attentional orientation; instead emotional information is processed more thoroughly, due to which disengagement from the stimulus and response to the probe require more time. According to Asanowicz and Wolski (2007), 500 ms is long enough to reorient attention twice; following initial engagement with the emotional stimulus, attention may be shifted to a neutral stimulus. Consequently, while a very short display of affective stimuli triggers an automatic orientation reaction leading to attentional engagement, a longer exposure (500 ms) to affective stimuli does not reflect the processes of attentional orientation, but rather the costs of emotional information processing by the attentional control mechanism. Thus, only very short SOAs afford an insight in the process of initial attentional shifts, which proceed faster than the control processes.

Holas and Brzezicka (2009) argue that anxiety affects preattentive processing and causes heightened detection of threat-related stimuli. In anxious individuals, attention is initially "stuck" to the stimulus (attentional component associated with engagement), which may result in difficulties in disengagement, most often observed at SOAs of 150 to 600 ms. Anxious individuals often avoid looking at threatening stimuli at longer exposure times. This effect has been found in studies tracking eye movements at SOAs of 1500 to 3000 ms. Also Cooper and Langton (2006) report that 500 ms is sufficient time to enable more than one shift in covert attention (i.e., attending to a stimulus without shifting the subject's gaze towards it). Similarly, according to Holas and Brzezicka (2009), 500 ms of stimulus display is sufficient for several attentional shifts between different locations. This is corroborated by Wells and Matthews (1994), who conclude that a SOA of 500 ms or more provides enough time for a strategic shift of attention. Cooper and Langton (2006) note that following 100 ms of face stimulus presentation, the subject's attention is preferentially directed towards the location of threatening faces, while at 500 ms that effect is absent. Furthermore, Fox et al. (2001) and Fox et al. (2002) observe that since in the probe-detection task stimuli are presented in the central visual field, both locations on the screen (top/bottom or right/left) are task relevant, and display time is relatively long (500 ms), attention may be directed to different locations and the subjects may have a tendency to dwell on threat-related stimuli once they have been detected. If this is indeed the case, the traditional probe detection task (with a presentation time of 500 ms) cannot be used to determine whether the threatening stimulus draws attention or rather holds attention once detected (Fox et al., 2001, p. 682). In other words, it is impossible to differentiate between initial vigilance to threat and difficulty in disengagement from it (see Koster et al., 2004; Bar-Haim et al., 2007; Klumpp & Amir, 2009).

In their recent study, Derakshan et al. (2007) investigated the time course of processing emotional information in repressors using the dot probe task and the Posner paradigm. According to these authors, manipulation of stimulus exposure duration enables investigation of the time course of attentional bias, including automatic vigilance to threat upon short exposure times and conscious vigilance towards threat and/or avoidance of threat when exposure times are long. Davidson (1998) described such research efforts as affective chronometry, or "the temporal dynamics of affective responding" (p. 310). It should be noted that while measuring changes in attentional bias over time requires variation in stimulus exposure times, in practice it is difficult to use more than two or three exposure durations (e.g., 100 and 500 ms), without making the task excessively long and fatiguing for participants. Alternatively, one can assess the direction and latency of eye movements in response to emotional stimuli (Mogg & Bradley, 2005). It should be noted here that many researchers have used the eye-tracking paradigm in patients with eating disorders and analogue conditions, obtaining some conflicting results.

As far as body-related stimuli are concerned, while certain patients (especially those with low BMI) exhibited greater attentional engagement with body shape than healthy controls (Blechert et al., 2009; Pinhas et al., 2014), but other experiments failed to produce evidence for such attentional bias (Horndasch et al., 2012, a study of children). Similarly inconclusive results have been obtained for subclinical groups. In this case, inconsistency may be attributed to differences between study groups. Some of the studies in question reported that patients directed increased attention towards their own unattractive body parts (in eating symptomatic participants) (Jansen, Nederkoorn, & Mulkens, 2005; see also Roefs et al., 2008), whereas others indicated avoidance of those stimuli (participants high in body dissatisfaction) (Janelle et al., 2009). Yet another study of overweight subjects (Warschburger et al., 2015) gave the opposite result reporting greater attentional engagement with attractive vs. unattractive regions of one's body. In turn, experiments with stimuli such as pictures of specific body parts (hips and upper legs) and fat body words have consistently revealed vigilance towards those stimuli in subclinical samples in participants with high scores on the Drive-for-Thinness subscale of the Eating Disorder Inventory (EDI) (Garner, 1991) and in weight-dissatisfied individuals (Hewig et al., 2008; Gao et al., 2011, respectively). Furthermore, Cho, Kwak, and Lee (2013) found that healthy participants with high levels of avoidance coping exhibited greater attention towards slim body shapes than subjects with low levels of avoidance coping, especially after exposure to oversized body pictures.

Regarding food stimuli, researchers using the eye-tracking paradigm obtained mixed results, similarly to the case of body stimuli. Giel and coworkers (2011a) failed to produce evidence for greater attentional engagement with food cues in eating-disordered patients. In subclinical groups, the findings have not been conclusive either, as some researchers reported vigilance towards low calorie foods and decreased vigilance towards high calorie foods in overweight participants (Graham et al., 2011), while others found fixation on both high-calorie and low-calorie food items in individuals with nonclinical BED (Popien et al., 2015). According to Werthmann and colleagues (2013a), who studied high and low chocolate cravers, the former group was characterized by a longer initial gaze on chocolate and reduced total dwell time for chocolate stimuli than high cravers. Furthermore, the same research team (2013b) found that normalweight high-restrained and low-restrained eaters showed attentional biases for food stimuli in comparison to control stimuli, regardless of restraint status. Finally, Folkvord and colleagues (2015) reported that children with a higher gaze duration and faster latency of initial fixation for food cues ate more of the advertised snacks. Undoubtedly, research using the eye-tracking paradigm should be continued because the obtained results, albeit mixed, are very interesting and may provide valuable insights, especially if applied in conjunction with the dot probe task. So far, several studies of this type have been conducted (i.e., Castellanos et al., 2009; Nijs et al., 2010; Werthmann et al., 2011, 2014; Doolan et al.; 2014) (see Table 2). They are discussed at length in the following section on dot probe task research.

Results of dot probe studies with a focus on eating disordered individuals in the context of attentional bias research

The dot probe task was initially used to study populations with anxiety disorders, including Generalized Anxiety Disorder (GAD) (MacLeod et al., 1986) with the findings consistently indicating preferential processing of information linked to potentially threatening stimuli (MacLeod et al., 1986; see also Koster et al., 2004; Asanowicz & Wolski, 2007; Ouimet et al., 2009). It has been found that individuals with anxiety disorders, including GAD, respond faster to probes replacing threat-related stimuli than to those replacing neutral stimuli, even upon subliminal stimulus display. Their reaction times are also shorter than those of individuals in the control group, which seems to prove that persons with anxiety disorders exhibit attentional vigilance for threat (Macleod et al., 1986; Lee & Shafran, 2004; see also Fox et al., 2001; Koster et al., 2004; Szymura, 2007). This is true both for words (e.g., MacLeod et al., 1986; Mogg & Bradley, 2005; Fox et al. 2002) and faces (Bradley et al., 1999; see also Cisler et al., 2009; Cisler & Koster, 2010). It appears that individuals with stronger anxiety tend to select a subsequent source of data taking into consideration the previous threatening stimulus to make sure it does not recur in their selected attentional "window" (Szymura, 2007). The dot probe task has also been used for investigating attentional bias in other anxiety disorders, such as: panic disorder, arachnophobia, and blood-injury phobia (e.g., Wenzel & Holt, 1999; see also Ainsworth et al., 2002) and have usually reported attentional bias toward threat. Moreover, this paradigm has been used in patients with depression (e.g., Platt, Murphy, & Lau, 2015), alcohol dependence (e.g., Sinclair et al., 2016), complicated grief (e.g., Bullock & Bonanno, 2013), psychopathy (e.g., Edalati, Walsh, & Kosson, 2016), insomnia (Spiegelhalder et al., 2010), chronic pain (e.g., Asmundson, Wright, & Hadjistavropoulos, 2005), and asthma (e.g., Fritzsche et al., 2010), as well as in repressors (e.g., Derakshan et al., 2007). Recent years have seen numerous studies using the dot probe task in patients with eating disorders.

This paper reviews the literature concerning attentional bias in eating disorders and analogue conditions, with a particular focus on tests using the dot probe paradigm. Even though this work sets out to characterize a part of the dot probe paradigm rather than offer a systematic overview, relevant studies where sought based on PRISMA recommendations (Moher et al., 2009). Key search terms ("eating disorders", "anorexia nervosa", "bulimia nervosa", "eating", "body shape", "weight", "attention bias", "attentional bias", "information processing", "dot probe task") were used to query the online databases EBSCOhost, Google, PubMed, and ScienceDirect. No limits were set on publication date. In terms of the participants, the inclusion criterion was a diagnosis of clinical or subclinical eating disorder or analogue condition (e.g., obesity, restrained eating); however to obtain a fuller understanding of attentional bias with respect to the health-illness continuum, this review also covered studies involving healthy individuals exposed to experimental manipulation (e.g. fasted vs. fed exposure to eating-, body shape-, and weight-related cues). There was no limit on the age or sex of participants. Initially, 186 papers (168 original articles and 18 reviews) were identified based on the above criteria. Subsequently, the eligibility of studies was evaluated in a two-step process. First of all, taking into consideration the multitude of diverse research results, original studies which did not employ the dot probe task (n=116) were excluded for the sake of clarity of meta-analysis. Ultimately, the original studies included in qualitative synthesis were: 27 articles describing applications of the dot probe task in eating disorders and analogue conditions, 16 works using combined measures in eating disorders and analogue conditions, and 11 papers on applications of attentional bias modification training (ABMT) based on the dot probe task in obese and healthy samples (ABMT was not applied in eating disorders in any of the studies). Second, the present meta-analysis included all of the identified 18 review articles, even if they did not discuss the one-dot probe paradigm, as their rejection would have implied discarding information on some of the most critical developments in attentional bias research in eating disorders and analogue conditions.

Thus to the best of the present author's knowledge, 27 original studies employing the dot probe task on patients with eating disorders (11) and analogue conditions (16) have been published to date (Table 1, appendices).

A brief presentation of the results is given below, complete with a critical discussion pointing to similarities and differences between them.

Several studies on patients with eating disorders have consistently reported attentional bias towards words reflecting a large physique (Rieger et al., 1998), negative eating stimuli (i.e., images depicting high-calorie foods) (Shafran et al., 2007, studies 1 and 2) and negative body shape stimuli (i.e., images reflecting thin models) (Shafran et al., 2007, study 2).

However, those results were not reproduced when the standard interstimulus interval (ISI) of 500 ms was changed to 2,000 ms (Lee & Shafran, 2008). Other findings included attentional avoidance of words reflecting a thin physique (which constituted positive body shape stimuli from the perspective of eating disordered individuals) (Rieger et al., 1998) and positive eating stimuli (i.e., images reflecting low-calorie foods) (Shafran et al., 2007). In contrast to the above, in the study of Blechert, Ansorge, and Tuschen-Caffier (2010) anorexic patients exhibited attentional bias towards self-photos (i.e., thin body cues).

In terms of stimuli unrelated to eating disorders, Cardi and colleagues (2013) found that patients with those disorders exhibited attentional bias towards rejecting faces, difficulty disengaging attention from them, and attentional avoidance of accepting faces. In another study, Cardi and colleagues (2014) identified vigilance towards dominant and submissive faces both in eating disordered patients and in individuals recovered from an eating disorder. Hughes-Scalise and Connell (2014) reported attentional bias towards angry faces in eating disordered teens; importantly, in participants with high attentional bias towards angry faces maladaptive parental response to sadness predicted seriousness of the eating disorder. Finally, the study by Schober and colleagues (2014) showed no evidence for a differential attentional bias towards threatening words in patients with anorexia nervosa as compared to healthy controls.

A considerable body of research using the dot probe task has also focused on the outcomes of eating disorder treatments. One study (Shafran et al., 2008, study 2) indicated a decrease in attentional biases for positive and negative eating stimuli following treatment (20 weeks of Cognitive Behavioral Therapy, CBT). Furthermore, Kim et al. (2014a) reported reduction in vigilance towards eating-related stimuli and negative shape stimuli in anorexic patients treated with oxytocin. Moreover, Kim and colleagues (2014b) found that patients exhibited changed attentional bias for angry faces following oxytocin administration (avoidance of angry faces was replaced with vigilance towards them).

Of particular importance are studies of overweight and obese samples because, although they may not be assigned to any particular group of eating-disordered patients (except for binge eating disorder, BED), they are very close to them in terms of body dissatisfaction, increased anxiety, and excessive attempts at weight control (e.g. Day, Ternouth, & Collier, 2009). Three studies on overweight and/or obese patients were found to use the dot probe task. Loeber et al. (2012) reported that food stimuli did not modulate attention allocation either in obese or in healthy participants at a very early stage of information processing. Very different results were obtained in the other two studies. First, the group of obese participants examined by Kemps, Tiggemann, and Hollitt (2014, study 1) revealed faster RTs to high calorie food than animal words. Second, Oh and Taylor (2013) showed that attentional bias to chocolate images could trigger uncontrolled consumption both in overweight/obese individuals and normal chocolate eaters.

Research conducted on a variety of subclinical and healthy samples provides a very interesting, albeit sometimes contradictory, body of evidence, with discrepancies being probably attributable to differences between the subclinical groups. Some studies have confirmed that problematic food-related beliefs and behaviors are associated with attentional biases towards food cues. For instance, Placanica et al. (2002) reported that high EDI-2 scorers exhibit greater attentional bias towards low-calorie food as compared to low EDI-2 scorers, and greater attentional bias towards low-calorie food when nonfasted as compared to fasted. Brignell and colleagues (2009) found that high-external eating was associated with greater attentional bias for food cues. In another study (Hou et al., 2011), attentional bias towards food pictures was positively correlated with external eating. In subjects with high food neophobia Maratos and Staples (2015) identified greater vigilance towards unfamiliar fruit and vegetable stimuli than in those with low food neophobia. Furthermore, in participants with high hunger Mogg and colleagues (1998) detected attentional bias for food-related stimuli, but only if those stimuli were presented for a longer time (500 ms). Other noteworthy results come from two studies reporting attentional bias for food cues. First, Papies, Stroebe, and Aarts (2008) found that in restrained eaters pre-exposure to food cues elicited an attentional bias towards palatable food words. Second, Shank and colleagues (2015) identified a positive correlation between attentional bias towards highly palatable food and BMI in children with loss of control eating.

Importantly, another group of studies did not reveal differences between subclinical individuals and healthy participants in terms of attentional biases. Glauert et al. (2010) reported that healthy participants exhibited vigilance towards thin bodies for an ISI of both 500 ms and 150 ms and irrespective of whether stimuli (images of thin and fat female bodies) were less or more extreme. In turn, Wilson and Wallis (2013, study 3) did not identify any effect of restrained eating and/or mood on attention processing. Very surprisingly, healthy participants examined by Freijy, Mullan, and Sharpe (2014) revealed attentional bias towards high-calorie pictures, away from high-calorie words, towards low-calorie words, and away from low-calorie pictures.

Finally, one should take note of experimental manipulations in healthy samples. Smith and Rieger (2010) did not detect increased attention towards negative shape/weight words in participants in the body dissatisfaction condition versus negative mood and neutral conditions, but participants in the negative mood condition exhibited increased attention towards negative shape/weight words relative to the body dissatisfaction condition. Similarly, in a study by Hepworth and colleagues (2010) negative mood increased attentional bias for food pictures in healthy participants. In turn, di Pellegrino, Magarelli, and Mengarelli (2011) reported that attentional bias for food eaten decreased from pre-to post-satiety, along with the subjective pleasantness of that food.

In summary, despite certain inconsistency in the reported results, most studies of patients with eating disorders indicated vigilance towards stimuli related to those disorders (e.g., Shafran et al., 2007). Investigations using stimuli unrelated to the disorders (faces) were less consistent: some authors reported vigilance to those stimuli (e.g., Cardi et al., 2013), while others did not find differences between eating disordered patients and healthy controls (e.g., Schober et al., 2014). Nevertheless, it is noteworthy that attentional bias patterns changed after treatment (CBT or oxytocin), resulting in reduced vigilance towards eating-related stimuli (e.g., Shafran et al., 2008, study 2; Kim et al., 2014a).

Studies using the dot probe task in subclinical and healthy samples revealed considerable discrepancies in attentional biases for cues related to eating disorders. While some authors reported vigilance to these stimuli (e.g., Brignell et al., 2009), others did not identify any attentional biases in this respect (Loeber et al., 2012) or did not detect differences between subclinical and healthy participants (e.g., Werthmann et al., 2013b).

Finally, only three studies (i.e. Mogg et al., 1998; Lee & Shafran, 2008; Glauert et al., 2010), explored the relationship between ISI and attentional bias, so further research in this area is needed.

Of note are also studies employing the dot probe task and other paradigms. To the best of the present author's knowledge, sixteen papers on the subject have been published to date, including one on eating disordered patients and fifteen on subclinical and healthy samples (Table 2, appendices).

The only such study involving patients with eating disorders was conducted by Chamberlain and co-authors (2012), who examined subjects with BED before and after treatment. Although they proved that GSK1521498 (a selective mu-opioid receptor antagonist) at 5 mg/day significantly reduced attentional bias for food pictures (dot probe task) versus placebo at longer stimulus duration (2000 ms), the treatment had no effect on the Stroop task.

Similarly as in the case of studies using exclusively the dot probe paradigm, one should separately analyze reports on overweight and obese samples. To the best of the present author's knowledge, to date 7 studies of this type have been carried out. A study using the eye-tracking paradigm (Castellanos et al., 2009) reported increased gaze duration for food compared to non-food images in the fasted condition both in obese and healthy participants, but no attentional bias was found for cues related to an eating disorder on the dot probe task. Nijs and co-authors (2010), who investigated both obese/overweight and healthy participants, identified enhanced automatic orientation towards food cues in hungry versus satiated participants, and in overweight/obese versus normal-weight individuals, but only on the dot probe task. Furthermore, in the same study Nijs and coauthors (2010) observed increased intentional allocation of attention to food pictures in hunger versus satiety, but only using event-related potentials (ERP). At the same time, they did not find differences between obese and healthy participants in eye-tracking data. Werthmann et al. (2011) obtained statistically significant results only for experiments involving the eye-tracking paradigm, but not the dot probe task. In overweight (versus healthy) participants they detected more frequent initial gazing towards food pictures, accompanied by subsequent reduced maintenance of attention on those pictures. Furthermore, according to Werthmann and colleagues (2011) craving was related to initial orientation towards food. Doolan et al. (2014), who employed both the dot probe task and the eye-tracking paradigm, obtained statistically significant results only for the latter: both overweight/obese participants and healthy participants showed greater attentional bias towards high-energy-density (vs. low-energy-density) food images regardless of hunger condition. A study of both obese and healthy participants by Garcia-Garcia et al. (2013) reported higher reaction times both for food and rewarding non-food stimuli (dot probe task) and decreased activation of the bilateral occipital lobe, lateral prefrontal cortex, medial prefrontal cortex, precentral gyrus, paracingulate gyrus, anterior cingulate gyrus, precuneous/posterior cingulate cortex, and lateral occipital cortex (functional magnetic resonance imaging MRI). One should also mention works which did not identify any statistically significant effects. In a study of obese and overweight patients, low- and high-restrained eaters and healthy participants, Ahern and colleagues (2010) did not find any differences in attentional bias for food-related images on the dot probe task or in approach tendencies elicited by food images on the stimulus-response compatibility task. Nathan et al. (2012), who examined overweight/obese participants using the Stroop task and the dot probe task, did not report any effects of the D3 receptor antagonist GSK598809 on attentional bias.

Interestingly, many studies involving subclinical and healthy groups, combining the dot probe task with other paradigms identified attentional bias for stimuli related to an eating disorder using one of the measures, but not the other. For instance, Boon, Vogelzang, and Jansen (2000) did not find any attentional bias for food and weight/shape stimuli on the dot probe task, but identified such bias towards food stimuli on the word recognition task. In turn, in a dot probe task study carried out by Johansson, Ghaderi, and Andersson (2004) individuals high in responsiveness to external food cues exhibited avoidance of food words, while those low in responsiveness revealed vigilance towards food words; at the same time no attentional bias was detected for food or body words on the Stroop task. Calitri and colleagues (2010) did not find any effects of cognitive bias (as measured by the dot probe task) on weight change over a one-year period, but reported that cognitive bias (as measured by the Stroop task) towards unhealthy foods predicted an increase in BMI whereas cognitive bias towards healthy foods was associated with a BMI decrease.

Only one study reported statistically significant results for all (in this case--two) paradigms used. In the study employing the dot probe task and the eye-tracking paradigm in healthy participants, Werthmann and coworkers (2014) found that self-reported emotional eating did not account for changes in attention allocation for food or food intake and that in participants in neutral condition attention, maintenance on food cues was significantly related to increased intake in contrast to the sad mood condition.

Some other studies used the dot probe task in conjunction with paradigms designed to examine inhibitory control. Loeber and colleagues (2013), who used the dot probe task and a go/no-go task, identified an influence of self-reported hunger on behavioral response inhibition. Interesting results were reported by Kakoschke, Kemps, and Tiggemann (2015), who applied three tools: the dot probe task, an approach-avoidance task, and a food-specific go/no-go task. They found that in healthy participants neither attentional nor approach bias alone made a significant contribution to food intake (dot probe task, approach-avoidance task). On the other hand, they detected a significant effect of the interaction between approach bias (approach-avoidance task) and inhibitory control (foodspecific go/no-go task) on unhealthy snack food intake. Participants who showed a strong approach bias combined with low inhibitory control consumed the most snack food. While Lattimore and Mead (2015) obtained interesting results with the dot probe task, such as slower disengagement from pictorial food stimuli (for 2000 ms duration) in high-impulsive participants and faster detection of pictorial food cues (for 500 ms duration) in low-impulsive participants, differences on the go/no-go task were not statistically significant. Pothos et al. (2009), who used the Stroop task, the dot probe task, a recognition task, and the extrinsic affective Simon task, found that correlations between the various cognitive measures were weak and evident only in certain subsets of the population sample, as defined by gender and emotional-, restrained- and external-eating characteristics of healthy participants.

In summary, the use of the dot probe task in conjunction with other paradigms has led to mixed results. Some studies employing that research pattern (e.g., Castellanos, 2009) reported statistically significant results for one of the tests only, while others (e.g., Nathan et al., 2012) did not obtain any significant findings whatsoever. Only a few studies (i.e., Garcia-Garcia et al., 2013; Werthmann et al., 2014) yielded statistically significant results on all the measures applied. Studies focused on inhibitory control were also inconclusive (e.g., Lattimore & Mead, 2015). Hence, the question arises as to what is actually measured by those tools, especially in light of the seminal work by Pothos and co-authors (2009), which revealed poor correlations between the various tests (Stroop task, dot probe task, recognition task, extrinsic affective Simon task). Perhaps the best solution would be to use only one methodologically sound measure of attentional bias?

Despite the above-mentioned difficulties, one should carefully consider systematic reviews and meta-analyses focused on the results of attentional bias tests in eating disorders and analogue conditions. To the best knowledge of the present author, eighteen papers of this kind have been published to date, thirteen of which included results from patients with eating disorders (Table 3, appendices).

Most reviews of works involving patients with eating disorders (beside other groups) were devoted to analysis of results produced by different paradigms. Exceptions were reported in five papers. Aspen, Darcy, and Lock (2013) and Renwick, Campbell, and Schmidt (2013a) analyzed four and twelve dot probe task studies, respectively. The conclusions were that patients with eating disorders exhibited attentional bias towards negative eating disorder-related stimuli (greater for negative eating-related than shape-related stimuli) and away from positive eating disorder-related stimuli (Aspen et al., 2013; Renwick et al., 2013a). Second, these patients were characterized by attentional bias towards rejecting faces and disengagement from accepting faces (Renwick et al., 2013 a). Two papers were devoted to studies using the Stroop task only (Dobson & Dozois, 2004; Johansson, Ghaderi, & Andersson, 2005). According to Dobson and Dozois (2004), who reviewed 26 papers, patients with anorexia nervosa are characterized by attentional bias for body/weight stimuli, while patients with bulimia nervosa additionally exhibit attentional biases for food and neutral stimuli. In another work analyzing 27 studies, Johansson and colleagues (2005) came to the conclusion that patients with anorexia nervosa exhibit greater Stroop interference for food than for body words while bulimic patients are characterized by moderate Stroop interference for body and food words. Finally, Zhu et al. (2012) offered a meta-analysis of 17 studies using fMRI in patients with anorexia nervosa and found that negative emotional arousal was related to cognitive processing bias of food and body stimuli.

Additionally, in their review covering 31 studies employing the dot probe task and the Stroop task Lee and Shafran (2004) suggested that eating disordered patients exhibit greater Stroop interference for food and shape words than healthy controls. Moreover patients with anorexia nervosa reveal Stroop interference for food, body, and size words and vigilance towards positive emotional words. On the other hand, patients with bulimia nervosa are characterized by Stroop interference for food, shape, weight, body and ego threat words and avoidance of positive emotional words. Generally, findings for anorexia nervosa seem to be more consistent than for bulimia nervosa.

The other twelve publications analyzed studies using multiple paradigms (see Table 3, appendices), leading to the following conclusions. First, patients with anorexia nervosa and bulimia nervosa exhibit attentional bias for disorder-relevant (food, body shape, and body weight) words, but results across various studies are inconsistent (Duchesne et al., 2004, meta-analysis of 19 papers). Second, those patients reveal hypervigilance towards high calorie food pictures and avoidance of low-calorie food images; in addition anorexic patients are characterized by greater Stroop interference than bulimic patients (Brooks et al., 2011, meta-analysis of 43 studies). In their review of 15 works, Giel and colleagues (2011b) argued that they consistently prove attentional bias for food pictures in patients with eating disorders. In turn, Oldershaw and co-authors (2011), who reviewed 13 studies, concluded that attentional bias towards food, shape, and weight stimuli extends to emotional stimuli and patients with eating disorders exhibit greater attentional bias towards social threat words than healthy controls. Attentional bias towards threat appears to be most specific to anorexia nervosa, while threat avoidance is linked to bulimia nervosa. Having analyzed 66 studies, Lydecker (2013) proposed that patients with eating disorders are susceptible to an interference effect of eating-disorder relevant words and identified certain associations between attention and core eating disorder symptomatology. Werthmann, Jansen, and Roefs (2015), who reviewed 30 reports, observed inconsistent results for eating-disordered patients in comparison to non-clinical groups and no significant differences in attentional bias for food cues between restrained eaters and unrestrained ones. In one of the latest meta-analyses, involving 21 studies, Wolz and colleagues (2015) found a consistent attentional bias towards food pictures vs. neutral pictures for patients and control groups, while group comparisons between individuals with abnormal eating and healthy eating participants were inconsistent.

To the best of the present author's knowledge, five meta-analyses did not involve patients with eating disorders. Nijs and Franken (2012), who reviewed seven papers, identified a specific pattern of attention to food stimuli in the group of overweight/obese participants. Doolan and colleagues (2015), who analyzed eight papers, claimed that in obese participants there is a positive correlation between reaction time bias scores and food craving scores and in overweight/obese participants there is increased gaze direction bias to food images as compared with healthy controls. In turn, Hendrikse et al. (2015) reported that only four out of nineteen studies supported the notion of enhanced reactivity to food stimuli overweight/obese individuals. Asmaro and Liotti (2014), who reviewed 33 papers devoted to fMRI and event-related potentials (ERP), reported that stimuli related to high-calorie food activated brain areas involved in reward processing, which were similar to those activated in substance users viewing drug-related stimuli. Finally, of special note is the review by Pool and co-authors (2016), which incorporated data from 243 reports, of which 58 employed the dot probe task. While no studies involving participants with eating disorders or analogue conditions were analyzed, some investigations did use food-related stimuli. The review suggested the occurrence of attentional biases towards positive stimuli as opposed to neutral ones.

Summing up the review results, it should be stressed that their conclusions are quite divergent. These discrepancies may be partially attributed to differences in the number of studies analyzed (from 4 to 66, except for Pool et al., 2016). Meta-analyses involving patients with eating disorders consistently showed the presence of attentional bias towards negative eating disorder-related stimuli (i.e., Duchesne et al., 2004; Lee & Shafran, 2004; Giel et al., 2011b; Aspen et al., 2013; Lydecker, 2013; Renwick et al., 2013a; see also Brooks et al., 2011) and away from positive eating disorder-related stimuli (i.e., Aspen et al., 2013; Lydecker, 2013; Renwick et al., 2013a; see also Brooks et al., 2011). However, there are considerable discrepancies between the results of meta-analyses in terms of the type of stimuli. While according to Dobson and Dozois (2004) patients with anorexia nervosa exhibit an attentional bias for body/weight stimuli and those with bulimia nervosa additionally reveal attentional biases for food cues, Johansson and colleagues (2005) concluded that patients with anorexia nervosa are characterized by greater attentional bias (Stroop interference) for food than for body words. Moreover, Oldershaw and colleagues (2011) suggested that attentional bias towards food, shape, and weight stimuli extends to emotional stimuli and patients with eating disorders exhibit greater attentional bias towards social threat words than healthy controls. Importantly, Lydecker (2013) observed associations between attention and core eating disorder symptomatology. Unfortunately, Werthmann and colleagues (2015) reported inconsistent results for eating-disorder patients in comparison to non-clinical groups. Also some other researchers (i.e., Wolz et al, 2015) found that attentional biases towards food pictures occur both in patients with eating disorders and in healthy controls; moreover, group comparisons between individuals with abnormal eating and healthy eating participants were inconsistent. Meta-analyses which did not involve patients with eating disorders suggested a specific pattern of attention to food stimuli in the group of overweight/obese participants (Nijs & Franken, 2012), which is vigilance to food images (linked to food craving scores) (Doolan et al., 2015), while Hendrikse and colleagues (2015) reported that some studies confirmed attentional bias to these stimuli in overweight/obese individuals. Very promising are metaanalyses of studies using psychophysiol ogical measures (Zhu et al., 2012; Asmaro and Liotti, 2014), which corroborate reports from meta-analyses on experimental tasks evaluating attentional bias.

Attentional Bias Modification Treatment as an interesting treatment option for patients with eating disorders

As the efficacy of existing treatments for patients with eating disorders, including CBT, has been found unsatisfactory (e.g., Zipfel et al. 2014), efforts have been undertaken to develop novel, more effective therapy options. Several interesting methods have been designed on the basis of the cognitive approach to eating disorders.

For several years now, intensive studies have been under way on neurocognitive deficits in the executive function involving a set of neuropsychological processes primarily centered in prefrontal regions and governing higher-level, goal-directed behavior. The existing body of research suggests that impairments in this function, particularly in the domains of set-shifting (e.g., Tchanturia et al., 2011), central coherence (e.g., Lopez et al. 2009), inhibitory control (e.g., Wu et al., 2013), and working memory (e.g., Svaldi, Brand, & Tuschen-Caffier, 2010) are related to the development and maintenance of disordered eating behavior. These observations formed the basis for developing neurocognitive training known as cognitive remediation therapy (CRT) (e.g., Tchanturia, 2014) consisting of cognitive flexibility training, inhibitory control training, and working memory training. CRT shows initial promise for improving executive function, though more research is needed to establish whether these programs result in symptom reduction or greater responsiveness to conventional behavioral treatment (Juarascio et al., 2015).

Another interesting treatment option for patients with eating disorders is Attentional Bias Modification Treatment (ABMT). Although Bar-Haim (2010), who initiated work on the program, used the initialism ABM (attentional bias modification), this work has adopted ABMT for the sake of clarity, following the practice of Renwick et al. (2013a) and Renwick, Campbell, and Schmidt (2013b). ABMT is a novel method of treating anxiety disorders that arose from contemporary cognitive theories of anxiety and from experimental studies concerning threat-related attentional biases in anxiety disorders (Bar-Haim, 2010). In the ABMT protocol using the dot probe task, the location of the target probes is manipulated to increase the proportion of trials with targets appearing at the location of the intended training bias. For example, in attentional training aimed to induce attentional bias away from threat and towards neutral stimuli, targets would appear more frequently at the location of the neutral stimulus rather than threat. Researchers assume that a bias away from threat is gradually induced with the systematic repetition of trials, typically hundreds of times (Bar-Haim, 2010; see Figure 3).

Indeed, ABMT is a promising method for the treatment of anxiety disorders. Many researchers have shown that it leads to considerable reduction in anxiety symptoms, remission, and continued beneficial treatment effects for at least four months following the treatment course (Mathews & MacLeod, 2002; see also MacLeod et al., 2002; Shafran et al., 2008; Amir et al., 2009; Schmidt et al., 2009; Hoppitt & Mackintosh, 2009, see also Lopes, Viacava, & Bizarro, 2015).

Since anxiety is considered to play a major role in the development and maintenance of eating disorders, ABMT should be widely used in patients suffering from such disorders (Renwick et al., 2013a, b). Until several years ago, when very few papers on attentional bias in eating disorders were available, it may be said to have prevented the application of the dot probe task in the treatment of eating disorders. However, recent years have seen a proliferation of studies using the dot probe task in individuals with eating disorders and analogue conditions (Tables: 1, 2, see also table 3). To the best of the present author's knowledge, a total of ten reports have been published on ABMT effectiveness. Only two of them involved patients with clinical eating disorders (anorexia nervosa and binge eating disorder--Cardi et al., 2015 and Boutelle et al., 2016, respectively), while the others were conducted on individuals with subclinical eating conditions and healthy subjects (Table 4, appendices).

Although the last group of studies should be regarded as preliminary, they indicate that such interventions are effective: attentional bias for food increased in the "attend" group and decreased in the "avoid" group (Boutelle et al., 2014, 2016; Kakoschke, Kemps, & Tiggemann, 2014; Kemps, Tiggemann, & Hollitt, 2014 study 2; Kemps et al., 2014; Kemps, Tiggemann, & Elford, 2015; Kemps, Tiggemann, & Hollitt, 2016). Moreover, participants who are trained to attend to negative shape/weight-related stimuli are more likely to develop body dissatisfaction and more prone to dietary restraint when exposed to a body image challenge as compared with participants trained to attend to positive stimuli (Smith & Rieger, 2006, 2009). Additionally, Cardi and co-authors (2015) found that in patients with AN this type of training led to a moderate increase in attention to positive faces, accompanied by both lower levels of anxiety and higher self-compassion in response to a judgmental video clip.

Admittedly, it is far from obvious whether ABMT results could be generalized to real-life contexts, but this question may be addressed using an approach similar to CBT and CRT, in which the abilities acquired by the patient are practiced in real life as behavioral experiments (Tchanturia & Hambrook, 2010). In the case of ABMT such experiments would provide an opportunity to implicitly retrain early attention orientating which happens outside conscious control. However, it should be remembered that this route of translating newly acquired skills into everyday situations may be more difficult than in the case of the other two treatment methods, which rely on the individual's ability to utilize effortful attention control strategies. Nevertheless, behavioral experiments involving ABMT can be conducted, and are indeed necessary.

Designing attentional training for eating disordered patients requires thorough investigation of the time course of attentional allocation in this group. For this purpose, it is necessary to develop a novel modification of the dot probe task to distinguish between all three components of attention. Results obtained with such a tool should enable a comprehensive description of the temporal aspects of attention in patients with eating disorders and development of an appropriate training protocol with a view to alleviating their conditions. It remains to be established whether ABMT can be used as a stand-alone treatment or whether it will be more effective when used as adjunct to more traditional psychological interventions.

Summary

For many years now researchers have endeavored to determine the etiology of eating disorders and discover how they are maintained. Recently, an increasing focus has been directed to the cognitive approach, including selective attention. There is robust evidence that eating disordered individuals display an attentional bias for eating disorder-salient stimuli. Scholars have at their disposal a wide array of measures which have been successfully deployed in studies on fear. The attentional bias test most frequently used on patients with eating disorders is the Stroop test, which is unfortunately fraught with some shortcomings and it is debatable whether it actually measures attentional bias or distraction. One of the most promising measures of attentional bias, which is increasingly often used in eating disorder research, is the dot probe task. Again, the popularly used version of this tool has a number of shortcomings; for instance, the obtained results do not permit a distinction between the various components of attention (i.e., vigilance to relevant stimuli vs. difficulty disengaging attention from those stimuli). The modification introduced by Koster and colleagues (2004) is particularly promising as it solves the problem by means of baseline trials (with both stimuli being neutral). On the one hand, meta-analyses concerning the dot probe task in patients with eating disorders and analogue conditions indicate that this task needs to be methodologically perfected (it sometimes leads to inconclusive results). On the other hand, the rapidly increasing numbers of studies in this area make it possible to attain a more comprehensive view of attentional bias in this group of patients. In recent years, it has been suggested that the dot probe task could be used as a tool for training attentional bias in eating disordered patients (e.g., Renwick 2013a,b). Some researchers (e.g., Kemps et al., 2016) have already successfully undertaken such efforts (albeit only on subclinical groups). Indeed, this type of attention training has been found to result in very good outcomes. It should be emphasized that the use of such an intervention in eating disorders, whether as a stand-alone treatment or as an adjunct to the standard therapy, offers promising prospects to the patients as long as the training is designed to include all components of attentional bias.

(Manuscript received: 29 May 2015; accepted: 1 February 2017)

APPENDICES
Table 1. Attention bias in eating disorders and analogue
conditions--dot probe task studies

Reference        Subjects *             N    Stimuli

Studies in clinical samples

Rieger et al.    ED:                         Stimulus words
  (1998)         -AN                    16     reflecting a
                 -BN                    17     thin, a large
                 RES                    32     physique and
                                               positively or
                                               negatively
                                               valenced
                                               emotion
                                               words
Shafran et al.   ED:                         Food, shape pictures
  (2007)         -AN                    3      (positive,
  Study 1        -BN                    6      neutral and
                 -EDNOS                 14     negative), weight
                 Anxious                19     pictures (all
                 HC:                           neutral) and
                 -Low                   31     control pictures
                 -Moderate              21     (positive,
                 -High shape            23     neutral, negative)
                   concerns
Shafran et al.   ED:                         Food, shape pictures
  (2007)         -AN                    5      (positive, neutral
  Study 2        -BN                    27     and negative),
                 -EDNOS (BED)           6      weight pictures
                 -EDNOS (other)         44     (all neutral)
                 HC                     44     and control
                                               pictures
                                               (positive,
                                               neutral, negative)
Lee and          ED:                         Food, shape pictures
  Shafran        -AN                    3      (positive,
  (2008)         -BN                    6      neutral and
                 -EDNOS                 14     negative),
                 Anxious                19     weight pictures
                 HC:                           (all neutral)
                 -Low                   31     and control
                 -Moderate              21     pictures
                 -High shape            23     (positive,
                   concerns                    neutral, negative)
Shafran          ED:                         Food, shape pictures
  et al.         -AN                    5      (positive, neutral
  (2008)         -BN                    27     and negative),
  Study 1        -EDNOS (BED)           6      weight pictures
                 -EDNOS (other)         44     (all neutral)
                 HC                     44     and control
                                               pictures
                                               (positive,
                                               neutral, negative)
Shafran          ED (before and              Food, shape pictures
  et al.           after 20                    (positive, neutral
  (2008)           weeks of CBT):              and negative),
  Study 2        -BN                    13     weight pictures
                 -EDNOS (BED)           6      (all neutral)
                 -EDNOS (other)         12     and control
                 ED-Waiting List        24     pictures
                 Controls                      (positive,
                                               neutral, negative)
Blechert,        ED:                         Self and other
  Ansorge, and   -AN                    19     body photos
  Tuschen-       -BN                    18
  Caffier        HC                     21
  (2010)
Cardi et al.     ED:                         Faces expressing
  (2013)         -AN                    29     rejection and
                 -BN                    17     acceptance,
                 ANRec                  13     neutral faces
                 BNRec                  9
                 HC                     50
Cardi et al.     ED                     46   Grey-scale pictures
  (2014)         EDRec                  22     of neutral faces
                 HC                     50     and social rank
                                               stimuli, i.e.
                                               dominant and
                                               submissive faces
                                               of different
                                               people (males
                                               and females)
Hughes-          ED <18                 25   Emotional faces:
  Scalise,       ChP <18                25     happy, sad and
  and Connell                                  angry
  (2014)
Kim et al.       AN (the oxytocin       31   Food, weight,
(2014a)            condition and the           and shape images
                   placebo condition)
                   HC (the oxytocin     33
                   condition and the
                   placebo condition)
Kim et al.       AN (the oxytocin       31   Social faces
  (2014b)          condition and the           representing
                   placebo condition)          anger, disgust,
                   HC (the oxytocin     33     and happiness
                   condition and the
                   placebo condition)
Schober          AN:                         Threatening words
  et al.         -AN-R                  20     (denoting negative
  (2014)         -AN-BP                 17     emotional states,
                 -EDNOS-AN              12     physical illness
                 HC                     44     or death,
                                               catastrophe
                                               /trauma
                                               /victimization)
                                               and control
                                               words

Studies in overweight and obese samples

Loeber et al.    OB:                         Food words and
  (2012)         -Females               13     control words
                 -Males                 7
                 HW:
                 -Females               13
                 -Males                 7
Oh and           OW/OB regular               Chocolate and
  Taylor           chocolate eaters:           control images
  (2013)         -after 24 h            21
                   abstinence
                 -after [greater        17
                   than or equal
                   to]1 week            20
                   abstinence
                   during Lent
                   Normal
                   chocolate eaters
Kemps,           OB                     58   Food (high and low
  Tiggeman,      HW                     58     calorie) words
  and                                          and neutral,
  Hollitt                                      control (animal)
  (2014)                                       words
  Study 1

Studies in subclinical and healthy samples

Mogg et al.      HP (low and high            Food-related words
  (1998)           hunger):                    and control,
                 -Females               16     transport-related
                 -Males                 16     words
Placanica,       HP (fasted and              High-calorie food,
  Faunce, and    nonfasted):                   low-calorie
  Soames Job     -Low EDI-2             19     food, negative
  (2002)           scorers                     shape/weight,
                 -High EDI-2            19     positive shape
                   scorers                     /weight and
                                               control,
                                               household-related
                                               and transport-
                                               related words
Papies,          HP (RES and uRES):          Food words,
  Stroebe,       -Females               79     palatable food
  and            -Males                 25     words and control
  Aarts                                        words
  (2008)
  Study 1
Papies,          HP (RES and uRES):          Food words,
  Stroebe,       -Females               98     palatable food
  and            -Males                 40     words and control
  Aarts                                        words
  (2008)
  Study 2
Brignell         HP:                         Food and control
  et al.         -Females               44     stimuli pictures
  (2009)         -Males                 11
                 -Low external          24
                   eaters
                 -High external         19
                   eaters
Glauert          HP                     50   Images of thin and
  et al.                                       fat female
  (2010)                                       bodies (extreme
  Study 1                                      stimuli)
Glauert          HP                     50   Images of thin and
  et al.                                       fat female
  (2010)                                       bodies (extreme
  Study 2                                      stimuli)
Glauert          HP                     50   Images of thin and
  et al.                                       fat female
  (2010)                                       bodies (less
  Study 3                                      extreme stimuli)
Hepworth et      HP:                         Food and control
  al. (2010)     -The negative          40     pictures
                   mood condition
                 -The neutral           40
                   condition
Smith and        HP (the body           54   Negative shape/
  Rieger           dissatisfaction             weight words,
  (2010)           condition, the              control words
                   negative mood
                   condition, and
                   the neutral
                   condition)
di               HP (before             26   Food and control
  Pellegrino,      satiation and               pictures
  Magarelli,       after satiation)
  and
  Mengarelli
  (2011)
Hou et al.       HP (with high               Food and control
  (2011)           or low                      stimuli pictures
                   external
                   eating scores):
                 -Females               29
                 -Males                 13
Wilson and       HP:                         Food and control
  Wallis         -LRES                  31     pictures
  (2013)         -HRES                  29
  Study 1
Wilson and       HP:                         Food and control
  Wallis         -LRES                  31     pictures (based
  (2013)         -HRES                  29     on ratings)
  Study 2
Wilson and       HP:                         Food and control
  Wallis         -Negative mood         38     pictures (based
  (2013)         -Neutral mood          39     on additional
  Study 3                                      ratings)
Freijy,          HP                     99   Word and pictorial
  Mullan,                                      food (high-
  and Sharpe                                   calorie and low-
  (2014)                                       calorie) stimuli
Maratos and      HP with food                Photographs of
  Staples          neophobia,                  familiar and
  (2015)           <18:                        unfamiliar
                 -Females               35     fruits
                 -Males                 35     and vegetables
Shank et al.     HP <18:                     Pictures of
  (2015)         -With loss of          47     high palatable
                   control eating              foods, low
                 -Without loss of       29     palatable
                   control eating              foods and
                                               neutral,
                                               household
                                               objects

Reference        Main findings

Studies in clinical samples

Rieger et al.    ED:
  (1998)         -Trend attentional bias towards words reflecting
                   a large physique,
                 -Attentional bias away from words reflecting
                   a thin physique.
                 AN:
                 -Trend attentional bias towards words
                   reflecting a large physique.
                 BN:
                 -Trend attentional bias away from words
                   reflecting a thin physique.
                 RES:
                 -No attentional bias.
Shafran et al.   ED:
  (2007)         -Attentional bias towards negative eating
  Study 1          stimuli and neutral weight stimuli,
                 -Avoidance of positive eating stimuli,
                 -No attentional bias for shape stimuli and
                   neutral eating stimuli,
                 -Greater attentional bias for positive
                   eating stimuli than in all comparison groups,
                 -Greater attentional bias for negative eating
                   stimuli than in anxious, moderate and low
                   shape concern controls,
                 -No attention bias for positive, negative
                   and neutral shape stimuli across groups,
                 -Greater attention bias for neutral weight
                   stimuli than in all comparison groups.
Shafran et al.   ED:
  (2007)         -Attentional bias towards negative eating
  Study 2          stimuli, negative and neutral shape stimuli
                   and neutral weight stimuli,
                 -Attentional bias away from positive eating
                   stimuli,
                 -Greater attentional bias for positive and
                   negative eating stimuli than for HC,
                 -Greater attentional bias for negative shape
                   stimuli than for HC,
                 -Greater attentional bias for weight stimuli
                   than for HC.
                 ED and HC:
                 -No differences in attentional bias for
                   positive or neutral shape stimuli.
Lee and          ED:
  Shafran        -Attentional bias towards negative eating
  (2008)           stimuli, negative and neutral shape stimuli
                   and neutral weight stimuli when Inter-
                   Stimulus Interval (ISI)=500 ms,
                 -Attentional bias away from positive eating
                   stimuli when ISI=500 ms,
                 -Attentional bias towards neutral weight
                   stimuli when ISI=2,000 ms.
Shafran          ED:
  et al.         -Attentional bias towards negative eating
  (2008)           stimuli, negative and neutral shape stimuli
  Study 1          and neutral weight stimuli,
                 -Attentional bias away from positive eating
                   stimuli,
                 -Greater attention bias for positive and
                   negative eating stimuli than for HC,
                 -Greater attention bias for negative shape
                   stimuli than for HC,
                 -Greater attention bias for weight stimuli
                   than for HC.
                 ED and HC:
                 -No differences in attentional bias for
                   positive or neutral shape stimuli.
Shafran          ED:
  et al.         -Decrease in attentional biases for positive
  (2008)           and negative eating stimuli following
  Study 2          treatment,
                 -Decrease in attentional bias for weight
                   stimuli following treatment.
Blechert,        AN:
  Ansorge, and   -Attentional bias towards self-photo.
  Tuschen-       BN:
  Caffier        -Nonsignificant attentional bias towards
  (2010)           other photos.
                 HC:
                 -No attentional bias.
Cardi et al.     ED:
  (2013)         -Attentional bias towards rejecting faces,
                 -Difficulty disengaging attention from
                   rejecting faces,
                 -Sustained attentional avoidance of
                   accepting faces,
                 -No significant differences between AN and BN.
                 ANRec and BNRec:
                 -Similar pattern to ED: no significant
                   differences between ANRec and BNRec.
                 HC:
                 -Attentional bias towards accepting faces,
                 -Difficulty disengaging attention from
                   accepting faces,
                 -Sustained attentional avoidance of
                   rejecting faces.
                 ED and HC:
                 -Attentional bias towards rejection was
                   correlated with adverse childhood
                   experiences.
Cardi et al.     ED and EDRec:
  (2014)         -Vigilance towards dominant and submissive faces.
                 HC:
                 -Attentional disengagement from dominant and
                   submissive faces,
                 -Vigilance towards neutral faces.
Hughes-          ED:
  Scalise,       -Attentional bias towards angry faces
  and Connell      moderated the relationship between parental
  (2014)           response to sadness and teen ED status:
                   for teens with high attentional bias towards
                   angry faces, maladaptive parental response
                   to sadness predicted seriousness of ED
                   status versus chronic pain status.
Kim et al.       AN:
(2014a)          -Reductions in vigilance towards eating'-
                   related stimuli and towards negative shape
                   stimuli under the influence of oxytocin.
                 HC:
                 -No changes.
Kim et al.       AN:
  (2014b)        -Avoidance of angry faces under the
                   placebo condition,
                 -Changed attentional bias for angry faces
                   after administration of oxytocin (avoidance
                   of angry faces before the administration
                   of oxytocin and vigilance towards angry
                   faces after the administration of oxytocin).
                 AN and HC:
                 -Attentional bias towards disgust faces
                   under the placebo condition,
                 -Reductions in attentional bias towards
                   disgust faces under the oxytocin condition,
                 -No attentional bias for happy/smiling
                   faces under either the placebo or oxytocin
                   conditions.
                 HC:
                 -Vigilance towards angry faces under the
                   placebo condition,
                 -Reduced vigilance towards angry faces
                   after administration of oxytocin.
Schober          AN:
  et al.         -No evidence for a differential attentional
  (2014)           bias for threatening words as compared
                   to HC.

Studies in overweight and obese samples

Loeber et al.    Food stimuli did not modulate attention
  (2012)           allocation in a very early stage of
                   information processing.
Oh and           -Attentional bias to chocolate images can
  Taylor           trigger uncontrolled consumption,
  (2013)         - Lower vigilance towards chocolate images
                   after exercise than after the rest,
                 -Similar effect for normal chocolate
                   eaters and OW/OB,
                 -Similar effects after restraint for eating
                   chocolate for 1day and 1week.
Kemps,           OB:
  Tiggeman,      -Faster RT for high calorie food words
  and              than for animal words.
  Hollitt        HW:
  (2014)         -No attentional bias.
  Study 1

Studies in subclinical and healthy samples

Mogg et al.      HP (low hunger):
  (1998)         -No attentional bias for brief (14 ms) and
                   longer (500 ms) duration food'-related stimuli.
                 HP (high hunger):
                 -Attentional bias for food'-related stimuli
                   when presented for longer duration only
                   (500 ms).
Placanica,       High and low EDI'-2 scorers:
  Faunce, and    -No vigilance towards negative and positive
  Soames Job       shape/weight stimuli.
  (2002)         Low EDI'-2 scorers:
                 -Greater attentional bias towards high'-calorie
                   foods when fasted compared with nonfasted.
                 High EDI'-2 scorers:
                 -Greater attentional bias towards low'-calorie
                   food compared with low EDI'-2 scorers,
                 -Greater attentional bias towards low'-calorie
                   food when nonfasted compared with fasted.
Papies,          RES and uRES:
  Stroebe,       -No selective attention for control words.
  and            RES:
  Aarts          -The pre'-exposure to food cues elicited
  (2008)           an attentional bias for palatable food,
  Study 1        -Higher hedonic ratings of palatable food
                   were associated with increased selective
                   attention for these food items.
                 uRES
                 -No shifts in selective attention.
Papies,          The results of Study 1 were replicated.
  Stroebe,       Additional results
  and            RES:
  Aarts          -Attentional bias for palatable food did
  (2008)           not emerge when they were exposed to
  Study 2          subliminally presented diet words after
                   the pre'-exposure to food cues.
Brignell         High'-external eating was associated with
  et al.           a greater attentional bias for food cues, as
  (2009)           well as with a bias to evaluate them more
                   positively.
Glauert          -Vigilance towards thin bodies when ISI=500 ms,
  et al.         -This attentional bias existed regardless
  (2010)           of how dissatisfied women were with their
  Study 1          bodies.
Glauert          -Vigilance towards thin bodies when ISI=150 ms,
  et al.         -This attentional bias existed regardless
  (2010)           of how dissatisfied women were with their
  Study 2          bodies.
Glauert          -Vigilance towards thin bodies when ISI=150 ms,
  et al.         - Attentional bias was significantly negatively
  (2010)           correlated with both body dissatisfaction
  Study 3          and BMI,
                 -The significant correlation between
                   attentional bias and body dissatisfaction was
                   eliminated when BMI was controlled,
                 -The significant correlation between BMI and
                   attentional bias was eliminated when
                   body dissatisfaction was controlled.
Hepworth et      -Negative mood increased both attentional
  al. (2010)       bias for food pictures and subjective
                   appetite,
                 -Attentional bias and subjective appetite
                   were positively inter'-correlated,
                 -Attentional bias was associated with
                   external and restrained eating.
Smith and        HP in the body dissatisfaction condition:
  Rieger         -No increase in attention towards negative
  (2010)           shape/weight words compared with the
                   negative mood and neutral conditions.
                 HP in the negative mood condition:
                 -Increase in attention towards negative
                   shape/weight words relative to the body
                   dissatisfaction condition.
di               -Attentional bias for food eaten decreased
  Pellegrino,      from pre'-to post'-satiety, along with the
  Magarelli,       subjective pleasantness for that food,
  and            -Subjective pleasantness and attentional
  Mengarelli       bias for the food not eaten did not show
  (2011)           any such decrease.
Hou et al.       -Attentional bias towards food cues
  (2011)           correlated positively with external eating,
                 -Attentional bias for food cues was
                   positively related to trait impulsivity,
                 -Attentional bias for food cues remained
                   related to attention impulsivity after
                   controlling for external eating.
Wilson and       -No evidence of attentional orientation
  Wallis           or disengagement,
  (2013)         -Slight attentional avoidance of
  Study 1          food'-related pictures.
Wilson and       No evidence of attentional bias.
  Wallis
  (2013)
  Study 2
Wilson and       -No evidence of attentional bias,
  Wallis         -No effect of restrained eating and/or
  (2013)           mood on attention processing.
  Study 3
Freijy,          -No main effects for stimuli type (pictures
  Mullan,          vs words) or calorific value (high vs low),
  and Sharpe     -Attentional bias towards high'-calorie
  (2014)           pictures,
                 -Attentional bias away from high'-calorie words,
                 -Attentional bias towards low'-calorie words,
                 -Attentional bias away from low'-calorie
                   pictures.
Maratos and      HP with food neophobia:
  Staples        -Vigilance towards unfamiliar fruit and
  (2015)           vegetable stimuli,
                 -Willingness to try the food stimuli was
                   inversely correlated with vigilance towards
                   unfamiliar fruits/vegetables.
                 HP with high food neophobia:
                 -Greater vigilance towards unfamiliar fruit
                   and vegetable stimuli than for HP with
                   low food neophobia.
Shank et al.     HP with and without loss of control eating:
  (2015)         -No differences in sustained attentional
                   bias and this component of attentional bias
                   was unrelated to body weight.
                 HP with loss of control eating:
                 -Attentional bias towards high palatable
                   foods was positively associated with BMI.

* Studies mostly involved females; hence, the studies where males
were included besides females are marked accordingly: Females,
Males.
* Abbreviations: ED, diagnosis of an eating disorder; AN, diagnosis
of anorexia nervosa; BN, diagnosis of bulimia nervosa; RES,
restrained eaters; uRES, unrestrained eaters; EDNOS, diagnosis of
eating disorder not otherwise specified; HC, healthy controls; BED,
binge eating disorder; CBT, cognitive behavioral therapy; ANRec,
recovered from anorexia nervosa; BNRec, recovered from bulimia
nervosa; EDRec, recovered from an eating disorder; <18, under 18
years of age, ChP, diagnosis of chronic pain, AN-R, anorexia
nervosa, restricting subtype; AN-BP Anorexia nervosa binge eating/
purging type; EDNOS-AN, diagnosis of eating disorder not otherwise
specified, anorexia nervosa type; OB, obese participants; HW,
healthy weight participants; OW, overweight participants; HP,
healthy participants; EDI-2, Eating Disorder Inventory-2; HRES,
high-restrained eaters; LRES, low-restrained eaters.

Table 2. Attention bias in eating disorders and analogue
conditions--results of studies that used combined paradigms (the
dot probe task and other paradigms)

Reference         Subjects *                N

Studies in clinical samples

Chamberlain,      BED before and after
  at al. (2012)     therapy (with a mu
                    opioid receptor
                    antagonist GSK1521498
                  -2 or 5 mg per day) or
                    placebo condition.
                  -Female                   35
                  -Male                     28

Studies in overweight and obese samples

Castellanos et    OB (fasted and fed        18
  al. (2009)        conditions)
                  HW (fasted and fed        18
                    conditions)
Ahern et al.      OW, OB, HW, LRES,         63
  (2010)            HRES
Nijs et al.       OW/OB (hungry and         26
  (2010)            satiated)
                  HW (hungry and            40
                    satiated)
Werthmann et      OW/OB                     22
  al. (2011)      HW                        29
Nathan et al.     OW/OB (LRES and           26
  (2012)            HRES) (before and
                    after administration
                    of D3 receptor
                    antagonist GSK598809
                    175 mg/day or
                    placebo)
Garcia-Garcia     OW/OB                     15
  et. al.         HW                        19
  (2013)
Doolan et al.     OW/OB (fasted and
  (2014)            nonfasted):
                  -Females                  12
                  -Males                    14
                  HW (fasted and fed
                    conditions):
                  -Females                  12
                  -Males                    14

Studies in subclinical and healthy samples

Boon,             HP:
  Vogelzang,      -RES                      29
  and Jansen      -uRES                     30
  (2000)
Johansson,        HP (individuals high      43
  Ghaderi, and      and low in
  Andersson         responsiveness to
  (2004)            external food cues)
Pothos et al.     HP                        25
  (2009)
Calitri et al.    HP                        102
  (2010)
Loeber et al.     HP                        48
  (2013)
Werthmann et      HP                        85
  al. (2014)        (the sad mood
                    condition,
                    the neutral
                    condition)
Kakoschke,        HP                        146
  Kemps, and
  Tiggemann
  (2015)
Lattimore and     HP (high-impulsive        50
  Mead (2015)       and low-impulsive
                    individuals

Reference         Measure of attention     Stimuli

Studies in clinical samples

Chamberlain,      Stroop task, dot         -Palatable, non-
  at al. (2012)     probe task               palatable and
                                             neutral, control
                                             words (Stroop
                                             task),
                                           -Food and non-
                                             food words (dot
                                             probe task).

Studies in overweight and obese samples

Castellanos et    Dot probe task, eye-     Food and non-
  al. (2009)        tracking paradigm        food images
Ahern et al.      Dot probe task,          Food and control
  (2010)            stimulus-response        pictures
                    compatibility task
Nijs et al.       Dot probe task, eye-     Food and control
  (2010)            tracking paradigm,       pictures
                    P300 event-related
                    potentials (ERP)
Werthmann et      Dot probe task, eye-     Palatable high-fat
  al. (2011)        tracking paradigm        food, musical
                                             instruments,
                                             office and traffic
                                             pictures
Nathan et al.     Stroop task, dot         Food images and
  (2012)            probe task               control images
Garcia-Garcia     Dot probe task,          High and low
  et. al.           functional Magnetic      calorie food
  (2013)            Resonance Imaging        pictures, control
                                             and rewarding
                                             non-food pictures
Doolan et al.     Dot probe task, eye-     High-energy-density
  (2014)            tracking paradigm        food images,
                                           low-energy-density
                                             food images

Studies in subclinical and healthy samples

Boon,             Dot probe task, word     Food-, weight/
  Vogelzang,        recognition task         shape-related and
  and Jansen                                 control: home-
  (2000)                                     related and office-
                                             related words

Johansson,        Stroop task, dot         Food-, body-weight-,
  Ghaderi, and      probe task               and shape-related
  Andersson                                  words, control
  (2004)                                     words
Pothos et al.     Stroop task, dot probe   Healthy foods,
  (2009)            task, a recognition      unhealthy foods,
                    task, extrinsic          and control
                    affective Simon task     (office) words
Calitri et al.    Stroop task, dot probe   Healthy and
  (2010)            task                     unhealthy food
                                             words, control,
                                             office words
Loeber et al.     Dot probe task, go/no-   Food and control
  (2013)            go task                  words (Go/No-
                                             Go Task), food
                                             and control
                                             pictures (Dot
                                             Probe Task)
Werthmann et      Dot probe task, eye-     Palatable high-fat
  al. (2014)        tracking paradigm        food, musical
                                             instruments,
                                             office and traffic
                                             pictures
Kakoschke,        Dot probe task,          Food and animal
  Kemps, and        approach-avoidance       pictures
  Tiggemann         task; food-specific
  (2015)            go/no-go task
Lattimore and     Dot probe task, stop-    Food and control
  Mead (2015)       signal task              stimuli

Reference          Main findings

Studies in clinical samples

Chamberlain,       BED:
  at al. (2012)    -GSK1521498--5 mg/day significantly reduced
                     attentional bias for food pictures versus
                     placebo (dot probe task),
                   -The effect on attentional bias was limited
                     to the longer stimulus duration condition
                     (2000 ms),
                   -No effects of treatment on Stroop task.

Studies in overweight and obese samples

Castellanos et     OB and HW:
  al. (2009)       -Increased gaze duration for food compared
                     to non-food images in the fasted condition
                     (eye-tracking paradigm).
                   OB:
                   -Increased attention to food images in the
                     fed condition,
                   -Preferential orienting towards food images
                     at the onset of each image (eye-tracking
                     paradigm).
                   HW:
                   -Similar gaze duration for food and non-food
                     images in the fed condition (eye-tracking
                     paradigm).
Ahern et al.       LRES and HRES:
  (2010)           -No differences in attentional bias for food-
                     related images (dot probe task),
                   -No differences in approach tendencies
                     elicited by food images (stimulus-response
                     compatibility task).
Nijs et al.        OW/OB and HW:
  (2010)           -No differences between groups or conditions
                     in the eye-tracking data (eye-tracking
                     paradigm),
                   -No differences between groups or conditions
                     in maintained attention (dot probe task),
                   -Enhanced automatic orientation towards food
                     cues in hungry versus satiated, and in
                     overweight/obese versus normal-weight
                     individuals (dot probe task).
                   HW:
                   -The intentional allocation of attention to
                     food pictures was enhanced in hunger
                     versus satiety (P300 ERP).
Werthmann et       OW:
  al. (2011)       -An approach-avoidance pattern of attention
                     towards high-fat food (eye-tracking
                     paradigm),
                   -Initial gaze towards food pictures more
                     often than in HW, but subsequently reduced
                     maintenance of attention on these pictures
                     (eye-tracking paradigm),
                   -Craving was related to initial orientation
                     towards food (eye-tracking paradigm).
Nathan et al.      OW/OB:
  (2012)           -No effect of the D3 receptor antagonist
                     GSK598809 on attentional bias (Stroop task,
                     dot probe task).
                   LRES:
                   -Significant attentional bias towards food
                     cues in both tasks under placebo, and this
                     was attenuated by GSK598809.
                   HRES:
                   -No attentional bias to food cues following
                     either placebo or GSK598809.
Garcia-Garcia      OB and HW:
  et. al. (2013)   -Both higher reaction times for food and
                     rewarding non-food stimuli (dot probe task).
                   OB:
                   -Decreased activation in bilateral
                     activation of occipital lobe, lateral
                     prefrontal cortex, medial prefrontal cortex,
                     precentral gyrus, paracingulate gyrus and
                     anterior cingulate gyrus, precuneous,
                     posterior cingulate cortex and lateral
                     occipital cortex (fMRI).
Doolan et al.      OW/OB and HC:
  (2014)           -Greater attentional bias towards high-
                     energy-density food images compared to
                     low-energy-density food images regardless
                     of hunger condition (eye-tracking paradigm).
                   OW/OB--males:
                   -Greater maintained attention towards high-
                     energy-density food images when compared
                     with HC (eye-tracking paradigm).

Studies in subclinical and healthy samples

Boon,              HP:
  Vogelzang,       -No attentional bias for food and weight
  and Jansen         /shape stimuli (dot probetask),
  (2000)           -Attentional bias towards food stimuli (word
                     recognition task).
Johansson,         HP:
  Ghaderi, and     Individuals high in responsiveness to
  Andersson          external food cues:
  (2004)           -Avoidance of food words (dot probe task).
                   Individuals low in responsiveness to external
                     food cues:
                   -Vigilance towards food words (dot probe task).
                   Individuals high and low in responsiveness
                     to external food cues:
                   -No significant differences in attentional
                     bias for body words on the dot probe task
                     or for food or body words on the Stroop task.
Pothos et al.      The relation between the cognitive measures
  (2009)             was weak and evident only in certain subsets
                     of the population sample, as defined by
                     gender and emotional-, restrained- and
                     external-eating characteristics of HP.
Calitri et al.     -No effects of cognitive bias (measured by
  (2010)             dot probe task) onweight change over a
                     1-year period,
                   -Cognitive bias (measured by Stroop task) to
                     unhealthy foods predicted an increase in
                     BMI whereas cognitive bias to healthy foods
                     was associated with a decrease in BMI,
                   -Cognitive biases appear to predict behavior
                     change.
Loeber et al.      HP:
  (2013)           -The influence of self-reported hunger on
                     behavioral response inhibition (go/no-go
                     task),
                   -The blood glucose level was associated with
                     an attentional bias towards food-associated
                     cues (dot probe task).
Werthmann et       HP:
  al. (2014)       -Self-reported emotional eating did not account
                     for changes in attention allocation for food
                     or food intake.
                   HP in the neutral condition:
                   -Attention maintenance on food cues was
                     significantly related to increased intake
                     in contrast to the sad mood condition.
Kakoschke,         HP:
  Kemps, and       -Neither attentional nor approach bias alone
  Tiggemann          made a significant contribution to food
  (2015)             intake (dot probe task, approach-avoidance
                     task),
                   -A significant effect of interaction between
                     approach bias (approach-avoidance task) and
                     inhibitory control (food-specific
                     go/no-go task) on unhealthy snack food intake,
                   -Participants who showed a strong approach
                     bias combined with low inhibitory control
                     consumed the most snack food.
Lattimore and      High-impulsive participants:
  Mead (2015)      -Slowed disengagement (longer RTs for 2000
                     ms duration) of pictorial food stimuli
                     compared to low-impulsive participants (dot
                     probe task).
                   Low-impulsive participants:
                   -Speeded detection of pictorial food cues
                     (for 500 ms duration) compared to high-
                     impulsive participants (dot probe task).

*  Studies mostly involved females; hence, the studies where males
were included besides females are marked accordingly: Females, Males.
*  Abbreviations: BED, binge eating disorder; GSK1521498, a selective
mu-opioid receptor antagonist; OB, obese participants; HW, healthy
weight participants; OW, overweight participants; LRES, low-
restrained eaters; HRES, high-restrained eaters; HP, healthy
participants; RES, restrained eaters; uRES; unrestrained eaters.

Table 3. Attentional bias in eating disorders and analogue
conditions--systematic reviews and meta-analyses

Study                 No. of
                      studies   Study groups           N

Dobson and            26        AN                     211
  Dozois (2004)                 BN                     509
                                ANRec                  23
                                BNRec                  11
                                LDFT                   22
                                HDFT                   37
                                Dieters                100
                                RES                    64
                                uRES                   61
                                TMJ                    45
                                HC                     461
                                HP<18                  120
Duchesne et al.       19        AN                     210
  (2004)                        BN                     399
                                EDNOS                  10
                                OB                     51
                                NC                     622
Lee and Shafran       31        ED                     20
  (2004)                        AN                     306
                                BN                     525
                                ANRec                  23
                                BNRec                  11
                                LDFT                   37
                                HDFT                   29
                                Dieters                24
                                RES                    65
                                uRES                   76
                                obRES                  45
                                NED                    19
                                HC                     873
Johansson,            27        ED (separated into     759
  Ghaderi, and                    AN and BN)
  Andersson (2005)              NED                    244
  (see also                     HC                     589
  Johansson, 2006,
  the same
  metaanalysis).
Brooks et al.         43        ED                     262
  (2011)                        AN                     355
                                BN                     253
                                ANRec                  23
                                BNRec                  11
                                RES                    437
                                uRES                   607
                                HC                     1076
Giel et al.           15        ED                     272
  (2011b)                       AN                     127
                                BN                     99
                                EDNOS                  7
                                ANRec                  9
                                RES                    11
                                Anxiety Disorders      38
                                HC                     480
Oldershaw et al.      13        ED                     83
  (2011) (Construct             AN                     339
  1:                            BN                     132
  social-affective              ANRec                  35
  values                        Depression and/or      21
  and responses)                  anxiety disorder
                                Obsessive-             16
                                  compulsive
                                  disorder
                                HC                     464
Nijs and Franken      7         OB                     72
  (2012)                        OW/OB                  63
                                Long-term              15
                                  successful WLM
                                NW                     167
Zhu et al.,           17        AN                     248
   (2012)                       HC                     241
Aspen, Darcy,         4         ED                     117
  and Lock                      HC                     226
  (2013)
Lydecker              66        ED                     236
  (2013)                        AN                     482
                                BN                     844
                                EDNOS                  30
                                OB                     72
                                ANRec                  58
                                BNRec                  11
                                Symptomatic            12
                                  dieters
                                Healthy dieters        83
                                RES                    104
                                obRES                  45
                                Fasting                58
                                Nonfasting             59
                                Weight dissatisfied    20
                                Weight satisfied       20
                                LDFT                   37
                                HDFT                   29
                                Psychiatric patients   19
                                Depressed              12
                                Anxiety disorder       19
                                TMJ                    45
                                HC                     1630
                                HP<18                  120
Renwick,              12        AN                     129
  Campbell, and                 BN                     131
  Schmidt (2013a)               EDNOS                  146
                                ANRec                  13
                                BNRec                  9
                                High EDI-2             19
                                Low EDI-2              19
                                RES                    29
                                uRES                   30
                                Anxious                38
                                With low shape         62
                                  concerns
                                With moderate          42
                                  shape concerns
                                With high shape        46
                                  concerns
                                HC                     267
Asmaro and            33        RES                    45
  Liotti (2014)                 uRES                   49
                                Emotional eaters       10
                                Non-emotional          11
                                  eaters
                                Chocolate cravers      22
                                Non-cravers            20
                                HP                     484
                                HP<18                  190
Doolan et al.         8         OB                     72
  (2015)                        OW/OB                  148
                                WLM                    15
                                HC with high BMI       15
                                HC with low BMI        21
                                NW                     146
Hendrikse             19        OB                     301
  et al.                        OW                     3
  (2015)                        OW/OB                  41
                                HW + OW + OB           102
                                WLM                    15
                                UW/HW                  21
                                HW                     368
Werthmann,            30        AN                     71
  Jansen,                       BN                     55
  and Roefs                     EDNOS                  64
  (2015)                        OB                     18
                                OW/OB                  242
                                OW/OB BED              27
                                OW/OB <18              29
                                RES                    263
                                uRES                   288
                                RES-AN-like            88
                                  patients
                                Anxious                19
                                With low shape         31
                                  concerns
                                With moderate          21
                                  shape concerns
                                With high shape        23
                                  concerns
                                HC                     217
                                HW                     403
                                HP (students)          460
Wolz et al.           21        AN                     48
  (2015)                        BN                     22
                                BED                    22
                                OB                     102
                                OW/OB                  26
                                Chocolate cravers      14
                                Non-cravers            12
                                Successful dieters     18
                                Non dieting            24
                                  subjects
                                Low external eaters    24
                                High external eaters   25
                                Low emotional          20
                                  eating style
                                High emotional         25
                                  eating style
                                RES                    39
                                uRES                   41
                                UW                     16
                                HC                     97
                                HP                     73
                                HP<18                  64
                                NW                     177
Pool et               243       HP                     9120
  al. (2016)

Study                 Measure of attention*       Stimuli

Dobson and            Stroop task (n=26)          Body/weight,
  Dozois (2004)                                     food words,
                                                    neutral words
Duchesne et al.       Encoding test (n=1),        Eating, weight,
  (2004)                free recall test            body shape
                        (n=1), dot probe            and body size
                        task (n=1), Stroop          words, control
                        task (n=16),                words
                        cued recall
                        test (n=1),
                        vocabulary
                        (WAIS-R) (n=1),
                        word completion
                        test (n=1)
Lee and Shafran       Stroop task (n=27),         Eating, food,
  (2004)                dot probe task              body shape/
                        (n=4)                       weight,
                                                    positive and
                                                    negative
                                                    emotional,
                                                    social threat
                                                    and control
                                                    words, body
                                                    shape images
Johansson,            Stroop task (n=27)          Body, food and
  Ghaderi, and                                      control words
  Andersson (2005)
  (see also
  Johansson, 2006,
  the same
  metaanalysis).
Brooks et al.         Stroop task (n=27),         Food stimuli
  (2011)                dot probe task              and control
                        (n=3), distracter           stimuli-images
                        task (n=2),                 and words
                        memory task (n=5),
                        verbalising task
                        (n=2), cue
                        reactivity (n=3),
                        perception
                        estimation (n=1)
Giel et al.           Functional Magnetic         Food, shape,
  (2011b)             Resonance Imaging             face, emotional
                        (FMRI) (n = 3),             and neutral
                        psychophysiological         images
                        measures (e.g.
                        electroencephalography,
                        EEG and
                        electromyography,
                        EMG ) (n=4),
                        behavioural measures
                        (e.g. dot-probe task)
                        (n = 8)
Oldershaw et al.      Dot probe task (n = 1),     Shape, weight,
  (2011) (Construct     Stroop task (n=2),          food,
  1:                    conditional                 emotional,
  social-affective      associative task            social threat,
  values                (n = 2), recall             appetitive and
  and responses)        task (n = 3),               control words,
                        startle reflex              auditory
                        (n=1), visual search        emotional
                        task (n=2), anagram         specific to
                        solving (n = 1), fast       AN and neutral
                        response decision task      stimuli, food,
                        (n=1)                       emotional and
                                                    facial images
Nijs and Franken      Dot probe task (n=4),       High and low
  (2012)                Stroop task (n=2),          calorie foods
                        eye-tracking                pictures, high-
                        paradigm (n=4),             fat food
                        event-related               pictures, high
                        potentials (n=2)            calorie sweet
                                                    foods pictures
                                                    and high calorie
                                                    savoury foods
                                                    pictures, non-
                                                    food pictures,
                                                    high and low
                                                    foods words,
                                                    non-food words
Zhu et al.,           Functional Magnetic         Food, body,
   (2012)               Resonance Imagining         emotional and
                        (fMRI) (n=17)               neutral stimuli
                                                    (oral and
                                                    visual)
Aspen, Darcy,         Dot probe task (n=4)        Words related to
  and Lock                                          thin and
  (2013)                                            large physique,
                                                    positively and
                                                    negatively
                                                    valenced emotion
                                                    words, pictures
                                                    related to
                                                    eating, body
                                                    shape, and body
                                                    weight
Lydecker              Stroop task (n=49),         Eating, food,
  (2013)                dot probe task              body shape and
                        (n=9), eye-tracking         weight words,
                        paradigm (n=8)              forbidden and
                                                    unforbidden
                                                    foods words,
                                                    positive body
                                                    words, self-
                                                    directed ego
                                                    threat words,
                                                    threatening
                                                    words
                                                    (soociotropy
                                                    threat words,
                                                    autonomy threat
                                                    words,
                                                    discomfort
                                                    anxiety threat
                                                    words, ego-
                                                    others threat
                                                    words, ego-self
                                                    threat words),
                                                    emotional words,
                                                    body shape
                                                    (figures) and
                                                    neutral images,
                                                    self-photo,
                                                    other-photo,
                                                    thin figure,
                                                    normal figure
                                                    and fat figure
                                                    images,
                                                    endomorph,
                                                    ectomorph,
                                                    mesomorph
                                                    figures, images
                                                    of attractive
                                                    men and women,
                                                    higher and
                                                    lower BMI images
Renwick,              Dot probe task (n=12)       Positive,
  Campbell, and                                     negative,
  Schmidt (2013a)                                   neutral
                                                    eating shape
                                                    and weight
                                                    images, high-
                                                    calorie food,
                                                    low-calorie
                                                    food, negative
                                                    and positive
                                                    shape/weight
                                                    words, self and
                                                    other body
                                                    images,
                                                    rejecting,
                                                    accepting and
                                                    neutral facial
                                                    images, negative
                                                    emotional words
                                                    (social threat,
                                                    physical
                                                    illness, death
                                                    and catastrophe
                                                    /trauma/
                                                    victimisation),
                                                    control images
                                                    (animals,
                                                    transport words,
                                                    home-related
                                                    and office-
                                                    related words)
Asmaro and            Electroencephalography      High-caloric
  Liotti (2014)         (EEG)/Event-related         food and
                        potentials (ERP)            chocolate
                        (n=10), functional          cues (images,
                        Magnetic Resonance          words, odors)
                        Imaging (fMRI)
                        (n=23)
Doolan et al.         Stroop task (n=2), eye-     Food and non-food
  (2015)                tracking paradigm           images, high
                        (n=4), dot probe            and low energy
                        task (n=5)                  dense food
                                                    words, control
                                                    words, pictures
                                                    related to high
                                                    calorie sweet
                                                    foods, high
                                                    calorie savoury
                                                    foods, and low
                                                    calorie foods
Hendrikse             Dot probe task (7),         High calorie and
  et al.                Stroop task (n=3),          low calorie
  (2015)                presentation of food        food words and
                        pair pictures--passive      pictures, high
                        (n=1), randomised-          calorie sweet
                        blocked passive             and savoury
                        picture presentation        foods pictures,
                        /viewing (n=6), one-        appetizing and
                        back visual                 non-appetizing
                        recognition task            food pictures,
                        (n=1), food attention       neutral non-
                        network test (n=1)          food pictures,
                                                    scenery, car,
                                                    geometric
                                                    shapes,
                                                    objects, office
                                                    items,
                                                    pictures,
                                                    rewarding
                                                    pictures,
                                                    "pleasant"
                                                    positive
                                                    valenced
                                                    pictures,
                                                    neutral
                                                    (utensil) items
                                                    pictures, animal
                                                    words, negative
                                                    emotion words,
                                                    neutral "glass
                                                    of water"
                                                    pictures,
                                                    neutral words
Werthmann,            Dot probe task (n=16),      High calorie and
  Jansen,               Stroop task (n=4),          low calorie
  and Roefs             free viewing task           food cues
  (2015)                (n=4), visual search        (words and
                        task (n=4),                 pictures),
                        clarification task          healthy and
                        (n=1), spatial cueing       unhealthy food
                        task (n=3), eye-            words and
                        tracking paradigm           pictures, high
                        (n=1), event-related        calorie savoury
                        potentials (ERP)            food pictures,
                        (n=1), flanker task         high calorie
                        (n=2), rapid serial         sweet food
                        visual presentation         pictures,
                        task (n=1), anti-           palatable
                        saccade task (n=1)          high calorie
                                                    food pictures
                                                    and words, bland
                                                    low calorie food
                                                    pictures,
                                                    pictures
                                                    connected to
                                                    food with high
                                                    added fat, food
                                                    with high added
                                                    sugar, food
                                                    with low natural
                                                    sugar, food
                                                    with low natural
                                                    fat, "positive
                                                    eating",
                                                    "negative
                                                    eating",
                                                    "neutral eating"
                                                    pictures, high-
                                                    fat food
                                                    pictures, low-
                                                    fat food
                                                    pictures, weight
                                                    /shape words,
                                                    appetising food,
                                                    non-appetising
                                                    food pictures,
                                                    high-fat cake
                                                    pictures,
                                                    chocolate
                                                    and non-
                                                    chocolate
                                                    pictures,
                                                    non-food cues,
                                                    e.g. shoes
                                                    (words and
                                                    pictures)
Wolz et al.           Event-related               High-and low-
  (2015)                potentials (ERP)            calorie food
                        (n=21), Stroop task         pictures,
                        (n=2), dot probe            emotional and
                        task (n=1), eye-            neutral
                        tracking paradigm           pictures, food
                        (n=1). go/no-go             and non-food
                        paradigm (n=1),             images and
                        oddball paradigm            words, images of
                        (n=4)                       chocolate, bland
                                                    and uncooked
                                                    foods, chairs,
                                                    images of
                                                    landscapes and
                                                    faces
Pool et               Dot probe task (n=58),      Positively
  al. (2016)            free viewing task           valenced
                       (n=24), rapid visual         stimuli:
                        serial presentation         Baby/child;
                        task (n=24), spatial        erotic/
                        cuing task (n=24),          attractive;
                        Stroop task (n=35),         food; general
                        visual search task          mixed; money;
                        (n=51), other               self-relevant;
                        adaptations of these        smiling face and
                        tasks (n=27)                neutral stimuli
                                                    (illustrations,
                                                    photos, words)

Study                 Main findings

Dobson and            BN:
  Dozois (2004)       -Attentional biases for body/weight,
                        food, and neutral stimuli.
                      AN:
                      -Attentional bias for body/weight stimuli.
                      Dieters and RES:
                      -No attentional bias.
Duchesne et al.       AN, BN:
  (2004)              -Attentional bias for disorder-relevant
                        words, but results across
                        various studies are inconsistent.
                      OB under eating restriction:
                      -Attentional bias for eating and body
                        size words.
                      BN:
                      -Decrease in the attentional bias for
                        eating, weight and body-shape words
                        after treatment.
                      EDNOS:
                      -Attentional bias for weight and body
                        shape words.
                      HC with restrictive attitudes:
                      -Attentional bias for eating words.
                      HC with high eating restriction:
                      -Attentional bias for eating, weight
                        and body-shape words.
Lee and Shafran       ED:
  (2004)              -Greater Stroop interference for food
                        and shape words than in the HC,
                      -Avoidance of positive words.
                      AN:
                      -Stroop interference for food, body
                        and size words and vigilance
                        towards positive words.
                      BN:
                      -Stroop interference for food, shape,
                        weight, body and ego threat words
                        and avoidance of positive words,
                      -Discrepancies between different studies,
                      -Findings for AN are more consistent
                        than for BN.
Johansson,            AN:
  Ghaderi, and        -Greater Stroop interference for food
  Andersson (2005)      than for body words.
  (see also           BN:
  Johansson, 2006,    -Moderate Stroop interference for body
  the same              and food words.
  metaanalysis).      ED, NED and HC:
                      -Significant differences between ED
                        and NED/HC in response latency.
                      NED and HC:
                      -No differences between NED and HC in
                        response latency.
Brooks et al.         ED:
  (2011)              -Hypervigilance towards high calorie
                        food pictures,
                      -Avoidance of low-calorie food images,
                      -High calorie food words distract
                        attention.
                      AN:
                      -Greater Stroop interference than in
                        the BN.
                      RES:
                      -No attentional bias for food stimuli.
Giel et al.           ED:
  (2011b)             -Sensory disengagement and higher
                        emotional involvement (fMRI),
                      -Experience food as less pleasurable
                        (self-reported data and facial EMG),
                      -Attentional bias for food pictures
                        (dot probe task).
Oldershaw et al.      -Attentional bias towards food, shape
  (2011) (Construct     and weight stimuli extends to
  1:                    emotional stimuli,
  social-affective    -Attentional bias towards threat
  values                appears most specific to AN,
  and responses)      -Threat avoidance is more strongly
                        associated with BN than with AN,
                      -Greater attentional bias towards
                        social threat words for ED than for HC.
Nijs and Franken      OW/OB:
  (2012)              -Specific (different from NW) pattern
                        of attention to food stimuli,
                      -After an enhanced initial automatic
                        orientation of attention to
                        high-calorie stimuli, tendency to
                        strategic attentional disengagement
                        from these stimuli.
Zhu et al.,           AN:
   (2012)             Although no robust brain activation has
                        been found in response to emotional
                        stimuli, emotion-related neural
                        networks are involved in the processing
                        of food and body stimuli. Negative
                        emotional arousal is related to
                        cognitive processing bias of food
                        and body stimuli.
Aspen, Darcy,         ED:
  and Lock            -Attentional bias towards negative
  (2013)                stimuli (greater bias for negative
                        eating-related stimuli than for
                        negative shape-related stimuli) and
                        away from positive stimuli (greater
                        bias for positive eating-related
                        stimuli than for positive shape-related
                        stimuli).
Lydecker              ED:
  (2013)              -Susceptibility to an interference
                        effect of eating-disorder relevant
                        words,
                      -Initial, automatic attentional bias
                        for eating disorder-relevant stimuli,
                      -Associations between attention and core
                        eating disorder symptomatology.
Renwick,              ED:
  Campbell, and       -Attentional bias towards negative
  Schmidt (2013a)       eating, neutral weight, negative
                        and neutral shape stimuli,
                      -Attentional bias away from positive
                        eating stimuli; greater bias for
                        these stimuli than in HC,
                      -Attentional bias towards rejecting
                        faces and disengagement from
                        accepting faces,
                      -Trend attentional bias towards
                        positive emotion stimuli (AN),
                      -No difference in attentional bias
                        to negative emotional words
                        compared with HC,
                      -Trend attentional bias away from
                        positive emotion stimuli
                      (BN).
                      HC:
                      -In participants with high hunger
                        attentional bias towards food
                        stimuli when presented for longer
                        duration only,
                      -Greater attentional bias to high-
                        calorie foods when fasted
                        compared with nonfasted and
                        greater attentional bias to low-
                        calorie food when nonfasted
                        compared with fasted,
                      -Greater attentional bias to low-
                        calorie food in participants with
                        high EDI-2 scores compared with
                        participants with low EDI-2
                        scores.
Asmaro and            Stimuli related to high-calorie
  Liotti (2014)         food activate brain areas involved
                        in reward processing, similar to
                        those activated when substance
                        users view drug stimuli.
Doolan et al.         OB:
  (2015)              -Positive correlation between
                        reaction time bias scores and food
                        craving scores.
                      OW/OB:
                      -Increased gaze direction bias to
                        food images as compared with the HC,
                      -Positive correlation between BMI
                        and reaction times to food
                        images high in fat and/or sugar.
                      OB and HC:
                      -Increased gaze direction and
                        duration to food images for all
                        participants when hungry,
                        maintained in OB females when fed,
                      -Increased gaze duration and
                        direction to high dense food
                        images compared with low dense
                        food images.
                      Weight loss maintainers:
                      -Slower reaction times to high
                        energy dense words than in HC
                        or OB participants.
                      HC:
                      -Faster visual probe task reaction
                        times in 500 ms trials to food
                        images as compared with the OW/OB,
                      -Increased direction bias to high
                        dense sweet food images in HC
                        with low BMI as compared with HC
                        with high BMI.
Hendrikse             -Only four studies support the
  et al.                notion of enhanced reactivity to
  (2015)                food stimuli in OW and OB,
                      -This support was observed
                        primarily (3 from 4 studies) in
                        studies that employed
                        psychophysiological techniques
                        (i.e. eye-tracking paradigm,
                        functional Magnetic Resonance
                        Imagining).
Werthmann,            -Conflicting evidence for an
  Jansen,               increased attention bias for high
  and Roefs             calorie food in OW and OB in
  (2015)                comparison with HW,
                      -Inconsistent results for eating-
                        disorder patients in comparison
                        to non-clinical groups,
                      -No differences in an attention
                        bias for food cues between RES
                        and uRES,
                      -Food-related attentional biases
                        in HW and RES.
Wolz et al.           -Consistent attentional bias
  (2015)                towards food pictures compared to
                        neutral pictures for patient and
                        control groups,
                      -Group comparisons between
                        individuals with abnormal eating
                        and healthy eating participants
                        were more inconsistent.
                      OB:
                      -Early attention engagement to
                        food is followed by relative
                        disengagement,
                      -Loss of control eating, as well
                        as external and emotional eating,
                        are associated with a sustained
                        maintenance of attention towards
                        high-caloric food.
Pool et               -Attentional biases towards
  al. (2016)            positive stimuli when compared
                        with neutral stimuli,
                      -This effect is larger during
                        early than later stages of
                        attentional processing, this means
                        that emotional stimuli are processed
                        rapidly and independently of
                        voluntary processes,
                      -This effect is significantly
                        larger for positive stimuli that
                        are relevant to the current
                        concerns of the observer.

* For the sake of clarity, full names of the measures of attention
were included. The gender of participants was not specified,
similarly as in other overviews of meta-analyses (e.g., Renwick,
Campbell, & Schmidt, 2013a), since more than 90% of the studies
involved females.
* Abbreviations: AN, diagnosis of anorexia nervosa; BN, diagnosis
of bulimia nervosa; ANRec, recovered from anorexia nervosa; BNRec,
recovered from bulimia nervosa; LDFT, Low scores on the Drive-for-
Thinness subscale of the EDI; HDFT, High scores on the Drive-for-
Thinness subscale of the EDI; RES, restrained eaters; uRES;
unrestrained eaters; TMJ, temporomandibular joint disorders; HC,
healthy controls; HP, healthy participans; <18, under 18 years of
age; EDNOS, diagnosis of eating disorder not otherwise specified,
OB, obese participants; NC, normal controls; ED, diagnosis of an
eating disorder; obRES, obese restrained eaters; NED, non-eating-
disordered nevertheless over-concerned with eating and body
weight; OW, overweight participants; WLM, Weight Loss
Maintainters; NW, normal weight participants; BMI, Body Mass
Index; EDI-2, Eating Disorder Inventory-2; HW, healthy weight
participants; BED, binge eating disorder; UW, underweight
participants.

Table 4. Attentional bias in eating disorders and analogue
conditions: Results of attentional bias modification studies
(only those based on the dot probe task) involving clinical,
subclinical, and healthy samples

Reference      Subjects*          N     Stimuli

Studies in clinical samples

Cardi et al.   AN                 28    Positive, negative and
  (2015)                                  neutral faces
Boutelle et    BED (OW and OB)    9     Food words and neutral
  al. (2016)                              words

Studies in overweight and obese samples

Boutelle et    OW/OB <18          24    Food words and non-food
  al. (2014)     (females-                words
                 44.8%,
                 males 55.2%)
               (the "avoid
                 food" group
                 and control
                 group)
Kemps,         OB (the "attend"   96    Food pictures and
  Tiggeman,      group,                   neutral, control
  and            the "avoid"              pictures
  Hollitt        group) before
  (2014)         and after the
  Study 2        induction of
                 an attentional
                 bias
                 towards or
                 away from
                 food words)
Kemps,         OW and OB          104   Food pictures
  Tiggeman,
  and
  Hollitt
  (2016)

Studies in healthy samples

Smith and      HP (before and     70    Negative shape/weight-
  Rieger         after the                related words,
  (2006)         induction of             negatively valenced
                 an attentional           emotion words,
                 bias toward              neutral, control
                 shape/weight-            words
                 related
                 information)
Smith and      HP (before and     98    Negative shape/weight
  Rieger         after the                words, positive
  (2009)         induction of             shape/weight words,
                 an attentional           negative (high
                 bias toward              calorie) food words,
                 shape/weight-            positive (low calorie)
                 related                  food words or neutral,
                 information)             control words
Kakoschke,     HP (the "attend    146   Healthy food and
  Kemps, and     healthy                  unhealthy food pictures
  Tiggeman       food" group
  (2014)         and the
                 "avoid healthy
                 food" group)
Kemps et       HP                 110   Chocolate and non-
  al. (2014)   (the "attend               chocolate pictures
  Study 1        chocolate"
                 group and the
                 "avoid
                 chocolate"
                 group)
Kemps et al.   HP                 88    Chocolate and non-
  (2014)       (the "attend               chocolate pictures
  Study 2        chocolate"
                 group and
                 the "avoid
                 chocolate"
                 group)
Kemps,         HP (the "attend    149   Chocolate and non-
  Tiggeman,      chocolate"               chocolate pictures
  and            group and the
  Elford       "avoid
  (2015)         chocolate"
                 group)

Reference      Main findings

Studies in clinical samples

Cardi et al.   At baseline patients displayed an attention bias
  (2015)         towards negative faces. At the end of
                 intervention there was a medium sized increase
                 in attention to positive faces There were also
                 lower levels of anxiety and higher levels of
                 self-compassion in response to a judgemental video
                 clip.
Boutelle et    -Beneficial changes in attentional bias,
  al. (2016)   -Decrease in weight, eating disorder symptoms,
                 binge eating, loss of control and responsivity to
                 food in the environment,
               -The majority of these effects were sustained
                 at 3-month follow-up.

Studies in overweight and obese samples

Boutelle et    The "avoid group":
  al. (2014)   -Beneficial outcome of the training as compared
                 to the control group for attentional bias,
               -Decreased number of calories consumed.
               Control group:
               -Attentional bias for food,
               -Upward food intake trend.
Kemps,         OB:
  Tiggeman,    Attentional bias for food increased in the
  and            "attend" group, and decreased in the
  Hollitt        "avoid" group.
  (2014)
  Study 2
Kemps,         OW and OB:
  Tiggeman,    -Attentional bias for food increased in the
  and            "attend" group and decreased in the "avoid"
  Hollitt        group. These retraining effects were
  (2016)         maintained at 24 h and one-week follow-up,
                 and extended to new food pictures,
               -Participants in the "avoid" group also
                 produced relatively fewer food words on the
                 word stem task than those in the "attend" group.

Studies in healthy samples

Smith and      HP:
  Rieger       Participants who are trained to attend to negative
  (2006)         shape/weight-related stimuli will be more
                 vulnerable to the development of body
                 dissatisfaction when exposed to a body image
                 challenge compared with participants who are
                 trained to attend to either neutral stimuli or
                 negative emotion stimuli.
Smith and      HP:
  Rieger       Participants who are trained to attend to
  (2009)         negative shape/weight-related stimuli will be more
                 vulnerable to the development of body
                 dissatisfaction and will be more prone to dietary
                 restraint when exposed to a body image challenge
                 compared with participants who are trained
                 to attend to positive shape/weight-related
                 stimuli.
Kakoschke,     HP:
  Kemps, and   Participants trained to attend to healthy food
  Tiggeman       cues demonstrated an increased attentional bias
  (2014)         for such cues and ate relatively more of the
                 healthy than unhealthy snacks compared to the
                 "attend unhealthy food" group.
Kemps et       HP:
  al. (2014)   -Attentional bias for chocolate cues increased
  Study 1        in the "attend chocolate" group, and decreased
                 in the "avoid chocolate" group,
               -Participants in the "avoid chocolate" group
                 ate significantly less of the chocolate muffin
                 than those in the "attend chocolate" group, by
                 contrast, blueberry muffin consumption did not
                 differ between the two training conditions,
               -Attentional retraining also affected chocolate
                 craving.
Kemps et al.   HP:
  (2014)       -Training effects from the first experiment
  Study 2        generalized to novel, previously unseen
                 chocolate pictures,
               -Participants in the "avoid chocolate" group
                 ate significantly less of the chocolate muffin
                 than those in the "attend chocolate" group,
                 by contrast, blueberry muffin consumption did
                 not differ between the two training conditions,
               -Additionally, the "attend chocolate" group
                 reported stronger chocolate cravings following
                 training, whereas the "avoid chocolate" group
                 reported less intense cravings.
Kemps,         HP:
  Tiggeman,    -Attentional bias for chocolate cues increased
  and            in the "attend chocolate" group, and decreased
  Elford         in the "avoid chocolate" group after training,
  (2015)       -Participants in the "avoid chocolate" group
                 also ate disproportionately less of a
                 chocolate food product than participants
                 in the "attend chocolate" group,
               -The observed re-training effects were
                 maintained 24 h later and also one week later.

* Studies mostly involved females; hence, the studies where males
were included besides females are marked accordingly: Females,
Males.
* Abbreviations: AN, anorexia nervosa; BED, binge eating disorder;
OW, overweight participants; OB, obese participants; HP, healthy
participants.


REFERENCES

Ahern, A.L., Field, M., Yokum, S., Bohon, C., & Stice, E. (2010). Relation of dietary restraint scores to cognitive biases and reward sensitivity. Appetite, 55(1), 61-68.

Ainsworth, C., Waller, G., & Kennedy, F. (2002). Threat processing in women with bulimia nervosa. Clinical Psychology Review, 22(8), 1155-1178.

Amir, N., Beard, C., Taylor, C., Klumpp, H., Elias, J., Burns, M., & Chen, X. (2009). Attention training in individuals with Generalized Social Phobia: A randomized controlled trial. Journal of Consulting and Clinical Psychology, 77(5), 961-973.

Amir, N., Elias, J., Klumpp, H., & Przeworski, A. (2003). Attentional bias to threat in social phobia: Facilitated processing of threat or difficulty disengaging attention from threat? Behaviour Research and Therapy, 41(11), 1325-1335.

Asanowicz, D., & Wolski, P. (2007). Funkcjonowanie uwagi w stanach lckowych, zaburzeniach emocjonalnych i fobiach. Zagadnienia metodologiczne paradygmatu "dot-probe". In Psychologia i medycyna. Wspolne obszary zainteresowan (pp. 516). Warszawa: VIZJA PRESS & IT.

Asmaro, D., & Liotti, M. (2014). High-caloric and chocolate stimuli processing in healthy humans: an integration of functional imaging and electrophysiological findings. Nutrients, 6(1), 319-641.

Asmundson, G.J., Wright, K.D., & Hadjistavropoulos, H.D. (2005). Hypervigilance and attentional fixedness in chronic musculoskeletal pain: consistency of findings across modified Stroop and dot-probe tasks. The Journal of Pain: Official Journal of the American Pain Society, 6(8), 497-506.

Aspen V., Darcy A.M., & Lock, J. (2013). A review of attention biases in women with eating disorders. Cognition & Emotion, 27(5), 820-838.

Bannerman, R.L., Milders, M.V., & Sahraie, A. (2010). Attentional cueing: Fearful body postures capture attention with saccades. Journal of Vision, 10(5), 1-14.

Bar-Haim, Y. (2010). Research Review: attention bias modification (ABM): a novel treatment for anxiety disorders. Journal of Child Psychology and Psychiatry, 5-1(8), 859-870.

Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M.J., & van Ilzendoorn, M.H. (2007). Threat-related attentional bias in anxious and nonanxious, Psychological Bulletin, 133(1), 1-24.

Bar-Haim, Y., Shulman, C., Lamy, D., & Reuveni, A. (2006). Attention to eyes and mouth in high-functioning children with autism. Journal of Autism and Developmental Disorders, 36(1), 131-137.

Ben-Tovim, D.I., Walker, M.K., Fok, D., & Yap, E. (1989). An adaptation of the Stroop test for measuring shape and food concerns in eating disorders: A quantitative measure of psychopathology? International Journal of Eating Disorders, 8(6), 681-687.

Blechert, J., Ansorge, U., & Tuschen-Caffier, B. (2010). A body-related dot-probe task reveals distinct attentional patterns for bulimia nervosa and anorexia nervosa. Journal of Abnormal Psychology, 119(3), 575-585.

Blechert, J., Nickert, T., Caffier, D., & Tuschen-Caffier, B. (2009). Social comparison and its relation to body dissatisfaction in bulimia nervosa: evidence from eye movements. Psychosomatic Medicine, 71(8), 907-912.

Boon, B., Vogelzang, L. & Jansen, A. (2000). Do restrained eaters show attention toward or away from food, shape and weight stimuli? European Eating Disorders Review, 8(1), 51-58.

Boutelle, K.N., Kuckertz, J.M., Carlson, J., & Amir, N. (2014). A pilot study evaluating a one-session attention modification training to decrease overeating in obese children. Appetite, 76, 180-185.

Boutelle, K.N., Monreal, T., Strong, D.R., & Amir, N. (2016). An open trial evaluating an attention bias modification program for overweight adults who binge eat. Journal of Behavior Therapy and Experimental Psychiatry, 52, 138-146.

Bradley, B.P., Mogg, K., Falla, S.J., & Hamilton, L.R. (1998). Attentional bias for threatening facial expressions in anxiety: Manipulation of stimulus duration. Cognition & Emotion, 12(6), 737-753.

Bradley, B.P., Mogg, K., & Millar, N.H. (2000). Covert and overt orienting of attention to emotional faces in anxiety. Cognition and Emotion, 14(6), 789-808.

Bradley, B.P., Mogg, K., White, J., Groom, C., & de Bono, J. (1999). Attentional bias for emotional faces in generalized anxiety disorder. British Journal of Clinical Psychology, 38(3), 267-278.

Brignell, C., Griffiths, T., Bradley, B.P., & Mogg, K. (2009). Attentional and approach biases for pictorial food cues. Influence of external eating. Appetite, 52(2), 299-306.

Brooks, S., Prince, A., Stahl, D., Campbell, I.C., & Treasure, J.A. (2011). A systematic review and meta-analysis of cognitive bias to food stimuli in people with disordered eating behaviour. Clinical Psychology Review, 31(1), 37-51.

Bullock, A.B., & Bonanno, G.A. (2013). Attentional bias and complicated grief: a primed dot-probe task with emotional faces. Journal of Experimental Psychopathology, 4(2), 194-207.

Calitri, R., Pothos, E.M., Tapper, K., Brunstrom, J.M., & Rogers, P.J. (2010). Cognitive biases to healthy and unhealthy food words predict change in BMI. Obesity (Silver Spring), 18(12), 2282-2287.

Calvo, M.G., & Avero, P. (2005). Time course of attentional bias to emotional scenes in anxiety: Gaze direction and duration. Cognition and Emotion, 19(3), 433-451.

Cardi, V., di Matteo, R., Corfield, F., & Treasure, J. (2013). Social reward and rejection sensitivity in eating disorders: An investigation of of attentional bias and early experiences. The World Journal of Biological Psychiatry, 14(8), 622-633.

Cardi, V., Di Matteo, R., Gilbert, P., & Treasure, J. (2014). Rank perception and self-evaluation in eating disorders. International Journal of Eating Disorders, 47(5), 543-552.

Cardi, V., Esposito, M., Bird, G., Rhind, C., Yiend, J., Schifano, S., Hirsch, C., & Treasure, J. (2015). A preliminary investigation of a novel training to target cognitive biases towards negative social stimuli in Anorexia Nervosa. Journal of Affective Disorders, 188, 188-193.

Castellanos, E.H., Charboneau, E., Dietrich, M.S., Park, S., Bradley, B.P., Mogg, K., & Cowan, R.L. (2009). Obese adults have visual attention bias for food cue images: Evidence for altered reward system function. International Journal of Obesity, 33(9), 1063-1073.

Chamberlain, S., Mogg, K., Bradley, B., Koch, A., Dodds, C., Tao, W., Maltby, K., Sarai, B., Napolitano, A., Richards, D., Bullmore, E., & Nathan, P. (2012). Effects of mu opioid receptor antagonism on cognition in obese binge-eating individuals. Psychopharmacology, 224(4), 501-509.

Channon, S., Hemsley, D., & de Silva, P. (1988). Selective processing of food words in anorexia nervosa. British Journal of Clinical Psychology, 27(3), 259-260.

Cho, A., Kwak, S.M., & Lee, J.H. (2013). Identifying Attentional Bias and Emotional Response After Appearance-Related Stimuli Exposure. Cyber Psychology, Behavior & Social Networking, 16(1), 50-55.

Cisler, J.M., Bacon, A.K., & Williams, N.L. (2009). Phenomenological characteristics of attentional biases towards threat: A critical review. Cognitive Therapy and Research, 33(2), 221-234.

Cisler, J.M., & Koster, E.H.W. (2010). Mechanisms of attentional bias towards threat in anxiety disorders: an integrative review. Clinical Psychology Review, 30(2), 203-216.

Cohen, J.D., Dunbar, K., & McClelland, J.L. (1990). On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332-361.

Cooper, R.M., & Langton, S.R. (2006). Attentional bias to angry faces using the dot-probe task? It depends when you look for it. Behaviour Research and Therapy, 44(9), 1321-1329.

Davidson, R.J. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition & Emotion, 12(3), 307-330.

Day, J., Ternouth, A., & Collier, D.A. (2009). Eating disorders and obesity: two sides of the same coin? Epidemiologia e Psichiatria Sociale, 18(2), 96-100.

Derakshan, N., Eysenck, M.W., Myers, L.B. (2007). Emotional information processing in repressors: The vigilance-avoidance theory. Cognition and Emotion, 21(8), 1585-1614.

Di Pellegrino, G., Magarelli, S., & Mengarelli, F. (2011). Food pleasantness affects visual selective attention, Quarterly Journal of Experimental Psychology, 64(3), 560-571.

Dobson, K.S., & Dozois, D.J.A. (2004). Attentional biases in eating disorders: A meta-analytic review of Stroop performance. Clinical Psychology Review, 23(8), 1001-1022.

Doolan, K.J., Breslin, G., Hanna, D., & Gallagher, A.M. (2014). Visual attention to food cues in obesity: an eye-tracking study. Obesity (Silver Spring), 22(12), 2501-2507.

Doolan, K.J., Breslin, G., Hanna, D., & Gallagher, A.M. (2015). Attentional bias to food-related visual cues: Is there a role in obesity? Proceedings of the Nutrition Society, 74(1), 37-45.

Duchesne, M., Mattos, P., Fontanelle, L.F., Veiga, H., Rizo, L., & Appolinario, J.C. (2004). Neuropsychology of eating disorders: a systematic review of the literature. Revista Brasileira de Psiquiatria, 26(2), 107-117.

Dyer, F.N. (1973). The Stroop phenomenon and its use in the study of perceptual, cognitive, and response processes. Memory and Cognition, 1(2), 106-120.

Edalati, H., Walsh, Z., & Kosson, D.S. (2016). Attentional bias in psychopathy: an examination of the emotional dot-probe task in male jail inmates. International Journal of Offender Therapy and Comparative Criminology, 60(11), 1344-1357.

Faunce, G. (2002). Eating disorders and attentional bias: a review. Eating Disorders, 10(2), 125-139.

Folkvord, F., Anschutz, D.J., Wiers, R.W., & Buijzen, M. (2015). The role of attentional bias in the effect of food advertising on actual food intake among children. Appetite, 84, 251-258.

Fox, E. (2002). Processing emotional facial expressions: The role of anxiety and awareness. Cognitive, Affective and Behavioral Neuroscience, 2(1), 52-63.

Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology, General, 130(4), 681-700.

Fox, E, Russo, R, & Dutton, K. (2002). Attentional bias for threat: evidence for delayed disengagement from emotional faces. Cognition and Emotion, 16(3), 355-379.

Freijy, T., Mullan, B., & Sharpe, L. (2014). Food-related attentional bias. Word versus pictorial stimuli and the importance of stimuli calorific value in the dot probe task. Appetite, 83, 202-208.

Frewen, P.A., Dozois, D.J.A., Joanisse, M.F., & Neufeld, R.J. (2008). Selective attention to threat versus reward: Meta-analysis and neural-network modeling of the dot-probe task. Clinical Psychology Review, 28(2), 308-338.

Fritzsche, A., Dahme, B., Gotlib, I.H., Joormann, J., Magnussen, H., Watz, H., Nutzinger, D.O., & von Leupoldt, A. (2010). Specificity of cognitive biases in patients with current depression and remitted depression and in patients with asthma. Psychological Medicine, 40(5), 815-826.

Gao, X., Wang, Q., Jackson, T., Zhao, G., Liang, Y., & Chen, H. (2011). Biases in orientating and maintenance of gaze among weight dissatisfied women: An eyemovement study. Behaviour Research & Therapy, 49(4), 253-259.

Garcia-Garcia, I., Jurado, M.A., Garolera, M., Segura, B., Marques-Iturria, I., Pueyo, R., Vernet-Vernet, M., Sender-Palacios, M.J., Sala-Llonch, R., Ariza, M., Narberhaus, A., & Junque, C. (2013). Functional connectivity in obesity during reward processing. Neuroimage, 66, 232-239.

Garner, D.M. (1991). Eating Disorders Inventory 2: Professional manual. Odessa, FL: Psychological Resources.

Giel, K.E., Friederich, H.C., Teufel, M., Hautzinger, M., Enck, P., & Zipfel, S. (2011a). Attentional processing of food pictures in individuals with anorexia nervosa--An eye-tracking study. Biological Psychiatry, 69(7), 661-667.

Giel, K.E., Teufel, M., Friederich, H.C., Hautzinger, M., Enck, P., & Zipfel, S. (2011b). Processing of pictorial food stimuli in patients with eating disorders--a systematic review. International Journal of Eating Disorders, 44(2), 105-117.

Glauert, R., Rhodes, G., Fink, B., & Grammer, K. (2010). Body dissatisfaction and attentional bias to thin bodies. International Journal of Eating Disorders, 43(1), 42-49.

Graham, R., Hoover, A., Ceballos, N.A., & Komogortsev, O. (2011). Body mass index moderates gaze orienting biases and pupil diameter to high and low calorie food images. Appetite, 56(3), 577-586.

Hendrikse, J. J., Cachia, R. L., Kothe, E. J., McPhie, S., Skouteris, H., & Hayden, M. J. (2015). Attentional biases for food cues in overweight and individuals with obesity: a systematic review of the literature. Obesity Reviews, 16(5), 424-432.

Hepworth, R., Mogg, K, Brignell, C., & Bradley, B.P. (2010). Negative mood increases selective attention to food cues and subjective appetite. Appetite, 54(1), 134-142.

Hewig, J., Cooper, S., Trippe, R.H., Hecht, H., Straube, T., Miltner, W.H.R. (2008). Drive for thinness and attention toward specific body parts in a nonclinical sample. Psychosomatic Medicine, 70(6), 729-736.

Holas, P., & Brzezicka, A. (2009). Pamicc i uwaga w lcku: znieksztalcenia we wczesnych i poznych etapach przetwarzania informacji. In M. Fajkowska, & B. Szymura (eds.), Lck: Geneza, mechanizmy, funkcje (pp. 158-189). Warszawa: Wydawnictwo Naukowe Scholar.

Hoppitt, L., & MacKintosh, B. (2009). Lck i depresja--podobienstwa i roznice w przetwarzaniu informacji. In M. Fajkowska, & B. Szymura (eds.), Lck: Geneza, mechanizmy, funkcje (pp. 190-210). Warszawa: Wydawnictwo Naukowe Scholar.

Homdasch, S., Kratz, O., Holczinger, A., Heinrich, H., Honig, F., Noth, E., & Moll, G.H. (2012). "Looks do matter" - Visual attentional biases in adolescent girls with eating disorders viewing body images. Psychiatry Research, 198(2), 321-323.

Hou, R., Mogg, K., Bradley, B.P., Moss-Morris, R., Peveler, R., & Roefs, A. (2011). External eating, impulsivity and attentional bias to food cues. Appetite, 56(2), 424-427.

Hughes-Scalise, A. & Connell, A. (2014). The roles of adolescent attentional bias and parental invalidation of sadness in significant illness: A comparison between eating disorders and chronic pain. Eating Behaviors, 15(3), 493-501.

Janelle, C.M., Hausenblas, H.A., Ellis, R., Coombes, S.A., & Duley, A.R. (2009). The time course of attentional allocation while women high and low in body dissatisfaction view self and model physiques. Psychology and Health, 24(3), 351-366.

Jansen, A., Nederkoorn, C., & Mulkens, S. (2005). Selective visual attention for ugly and beautiful body parts in eating disorders. Behaviour Research and Therapy, 43(2), 183-196.

Jaskowski, P. (2009). Neuronauka poznawcza. Jak mozg tworzy umysi? Warszawa: Wydawnictwo Vizja Press & IT.

Johansson, L. (2006). The role of cognitive processes in eating pathology. Uppsala Acta Universitatis Upsaliensis.

Johansson, L., Ghaderi, A., & Andersson, G. (2004). The role of sensitivity to external food cues in attentional allocation to food words on dot probe and Stroop tasks. Eating Behaviors, 5(3), 261-271.

Johansson, L., Ghaderi, A., & Andersson, G. (2005). Stroop interference for food--and body-related words: A meta-analysis. Eating Behaviors, 6(3), 271-281.

Jones, C., Leung, N., & Harris, G. (2007). Dysfunctional core beliefs in eating disorders: A review. Journal of Cognitive Psychotherapy, 21(2), 156-171.

Juarascio, A.S., Manasse, S.M., Espel, H.M., Kerrigan, S.G., & Forman, E.M. (2015). Could training executive function improve treatment outcomes for eating disorders? Appetite, 90, 187-193.

Kakoschke, N, Kemps, E., & Tiggemann, M. (2014). Attentional bias modification encourages healthy eating. Eating Behaviors, 15(1), 120-124.

Kakoschke, N., Kemps, E., & Tiggemann, M. (2015). Combined effects of cognitive bias for food cues and poor inhibitory control on unhealthy food intake. Appetite, 87, 358-364.

Kemps, E., Tiggemann, M., & Elford, J. (2015). Sustained effects of attentional re-training on. chocolate consumption. Journal of Behavior Therapy and Experimental Psychiatry, 49(PtA), 94-100.

Kemps, E., Tiggemann, M., & Hollitt, S. (2014). Biased attentional processing of food cues and modification in obese individuals. Health Psychology, 33(11), 1391-1401.

Kemps, E., Tiggemann, M., & Hollitt, S. (2016). Longevity of attentional bias modification effects for food cues in overweight and obese individuals. Psychology & Health, 31(1), 115-129.

Kemps, E., Tiggemann, M., Orr, J., & Grear, J. (2014). Attentional retraining can reduce chocolate consumption. Journal of Experimental Psychology: Applied, 20(1), 94-102.

Kim, Y.R., Kim, C.H., Cardi, V., Eom, J.S., Seong, Y, & Treasure, J. ( 2014a). Intranasal oxytocin attenuates attentional bias for eating and fat shape stimuli in patients with anorexia nervosa. Psychoneuroendocrinology, 44, 133-42.

Kim, Y.R., Kim, C.H., Park, J.H., Pyo, J., & Treasure, J. (2014b). The impact of intranasal oxytocin on attention to social emotional stimuli in patients with anorexia nervosa: a double blind within-subject cross-over experiment. PLoS One, 9(6), e90721.

Klein, G.S. (1964). Semantic power measured through the interference of words with color-naming. American Journal of Psychology, 77, 4, 576-588.

Klumpp, H., & Amir, N. (2009). Examination of vigilance and disengagement of threat in social anxiety with a probe detection task. Anxiety, Stress, and Copings 22(3), 283-296.

Koster, E.H., Crombez, G., Verschuere, B., & De Houwer, J. (2004). Selective attention to threat in the dot probe paradigm: Differentiating vigilance and difficulty to disengage. Behaviour Research and Therapy, 42(10), 1183-1192.

Koster, E.H., Crombez, G., Verschuere, B., & De Houwer, J. (2006). Attention to threat in anxiety-prone individuals: mechanisms underlying attentional bias. Cognitive Therapy and Research, 30(5), 635-643.

Krejtz, I., & Scdek, G. (2001). Pulapki nieswiadomego przetwarzania tresci emocjonalnych. In R. K. Ohme, M. Jarymowicz, & J. Reykowski (eds.), Automatyzmy w procesach przetwarzania informacji (pp. 135-152). Warszawa: Wydawnictwo Instytutu Psychologii PAN, SWPS.

Lattimore, P. & Mead, B.R. (2015). See it, grab it, or STOP! Relationships between trait impulsivity, attentional bias for pictorial food cues and associated response inhibition following in-vivo food cue exposure. Appetite, 90, 248-253.

Lee, M., & Shafran, R. (2004). Information processing biases in eating disorders. Clinical Psychology Review, 24(2), 215-238.

Lee, M., & Shafran, R. (2008). Processing biases in eating disorders: the impact of temporal factors. International Journal of Eating Disorders, 41(4), 372-375.

Loeber, S., Grosshans, M., Herpertz, S., Kiefer, F., & Herpertz, S.C. (2013) Hunger modulates behavioral disinhibition and attention allocation to food-associated cues in normal-weight controls. Appetite, 71, 32-39.

Loeber, S., Grosshans, M., Korucuoglu, O., Vollmert, C., Vollstadt-Klein, S., Schneider, S., Wiers, R. W., Mann, K, & Kiefer, F. (2012). Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. International Journal of Obesity, 36(10), 1334-1339.

Logan, G.D. (1980). Attention and automaticity in Stroop and priming tasks: Theory and data. Cognitive Psychology, 12(4), 523-553.

Lopes, M.F., Viacava, K.R., Bizarro, L. (2015). Attentional bias modification based on visual probe task: methodological issues, results and clinical relevance. Trends in Psychiatry Psychotherapy, 37(4), 183-193.

Lopez, C., Tchanturia, K., Stahl, D., & Treasure, J. (2009). Weak central coherence in eating disorders: A step towards looking for an endophenotype of eating disorders. Journal of Clinical and Experimental Neuropsychology, 31 (1), 117-125.

Lydecker, J. (2013). Visual attention bias and body dissatisfaction in eating disorders. Virginia Commonwealth University.

MacLeod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95(1), 15-20.

MacLeod, C., Rutherford, E., Campbell, L., Ebsworthy, G., & Holker, L. (2002). Selective attention and emotional vulnerability: Assessing the causal basis of their association through the experimental manipulation of attentional bias. Journal of Abnormal Psychology, 111(1), 107-123.

Maratos, F.A. & Staples, P. (2015). Attentional biases towards familiar and unfamiliar foods in children. The role of food neophobia. Appetite, 91, 220-225.

Mathews, A., & MacLeod, C. (2002). Induced emotional biases have causal effects on anxiety. Cognition and Emotion, 16(3), 331-354.

Mogg, K., & Bradley, B.P. (1998). A cognitive-motivational analysis of anxiety. Behaviour Research and Therapy, 36(9), 809-848.

Mogg, K., & Bradley, B.B. (2005). Attentional bias in generalized anxiety disorder versus depressive disorder, Cognitive Therapy & Research, 29(1), 29-45.

Mogg, K., Bradley, B.P., Hyare, H., & Lee, S. (1998). Selective attention to food related stimuli in hunger: Are attentional biases specific to emotional and psychopathological states, or are they also found in normal drive states? Behaviour Research and Therapy, 36(2), 227-237.

Moher, D., Liberati, A. Tetzlaff, J., Altman, D.G., & PRISMA group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097.

Morgan, C.I.A, Rees, H., & Curran, H.V. (2008). Attentional bias to incentive stimuli in frequent ketamine users. Psychological Medicine 38(9), 1331-1340.

Nathan, P.J., O'Neill, B. V., Mogg, K., Bradley, B.P., Beaver, J., Bani, M, Merlo-Pich, E, Fletcher, P.C., Swirski, B., Koch, A., Dodds, C.M., & Bullmore, E.T. (2012). The effects of the dopamine D3 receptor antagonist GSK598809 on attentional bias to palatable food cues in overweight and obese subjects International Journal of Neuropsychopharmacology, 15(2), 149-161.

Navon, D., & Margalit, B. (1983). Allocation of attention according to informativeness in visual recognition. Quarterly Journal of Experimental Psychology, 35(3), 497-512.

Nijs, I.M.T. & Franken, I.H.A. (2012). Attentional processing of food cues in overweight and obese individuals. Current Obesity Reports, 1(2), 106-113.

Nijs, I.M.T., Muris, P., Euser, A.S., & Franken, I.H.A. (2010). Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite, 54(2), 243-254.

Oh, H. & Taylor, A. (2013). A brisk walk, compared with being sedentary, reduces attentional bias and chocolate cravings among regular chocolate eaters with different body mass. Appetite, 71, 144-149.

Oldershaw, A., Hambrook, D., Stahl, D., Tchanturia, K., Treasure, J., & Schmidt, U. (2011). The socio-emotional processing stream in anorexia nervosa. Neuroscience and Biobehavioral Reviews, 35(3), 970-988.

Quimet, A.J., Gawronski, B., & Dozois, D.J.A. (2009). Cognitive vulnerability to anxiety: A review and an integrative model. Clinical Psychology Review, 29(6), 459-470.

Papies, E.K., Stroebe, W., & Aarts, H. (2008). The allure of forbidden food: On the role of attention in self-regulation. Journal of Experimental Social Psychology, 44(5), 1283-1292.

Pinhas, L., Fok, K.H., Chen, A., Lam, E., Schachter, R., Eizenman, O., Grupp, L., & Eizenman, M. (2014). Attentional biases to body shape images in adolescents with anorexia nervosa: an exploratory eye-tracking study. Psychiatry Research, 220(1-2), 519-26.

Placanica, J. L., Faunce, G. J., & Soames, Job R.F.S. (2002). The effect of fasting on attentional biases for food and body shape/weight words in high and low Eating Disorder Inventory Scorers. International Journal of Eating Disorders, 32(1), 79-90.

Platt, B., Murphy, S.E., & Lau Y.F. (2015). The association between negative attention biases and symptoms of depression in a community sample of adolescents. PeerJ, 3, e1372.

Pool, E.R., Brosch, T., Delplanque, S., & Sander, D. (2016). Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychological Bulletin, 142(1), 79-106.

Popien, A., Frayn, M., von Ranson, K.M., & Sears, C.R. (2015). Eye gaze tracking reveals heightened attention to food in adults with binge eating when viewing images of real-world scenes. Appetite, 91, 233-240.

Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3-25.

Posner, M.I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences, 91(16), 7398-7403.

Posner, M.I., Snyder, C.R.R., & Davidson, B.J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109(2), 160-174.

Pothos, E.M., Calitri, R., Tapper, K., Brunstrom, J.M., & Rogers, P. J. (2009). Comparing measures of cognitive bias relating to eating behaviour. Applied Cognitive Psychology, 23(7), 936-952.

Pratto, F., & John, O.P. (1991). Automatic vigilance: The attention grabbing power of negative social information. Journal of Personality and Social Psychology, 61(3), 380-391.

Renwick, B., Campbell, I. C., & Schmidt, U. (2013a). Review of attentional bias modification: A brain-directed treatment for eating disorders. European Eating Disorders Review, 21(6), 464-474.

Renwick, B., Campbell, I. C., & Schmidt, U. (2013b). Attention bias modification: A new approach to the treatment of eating disorders? International Journal of Eating Disorders, 46(5), 496-500.

Rieger, E., Schotte, D.E., Touyz, S.W., Beumont, P.J.V., Griffiths, R., & Russel, J. (1998). Attentional biases in eating disorders: A visual probe detection procedure. International Journal of Eating Disorders, 23(2), 199-205.

Roefs, A., Jansen, A., Moresi, S., Willems, P., van Grootel, S., & van der Borgh, A. (2008). Looking good. BMI, attractiveness bias and visual attention. Appetite, 51(3), 552-555.

Schmidt, N.B., Richey, J.A., Buckner, J.D., & Timpano, K.R. (2009). Attention training for generalized social anxiety disorder. Journal of Abnormal Psychology, 118(1), 5-14.

Smith, E. & Rieger, E. (2006). The effect of attentional bias toward shape- and weightrelated information on body dissatisfaction. International Journal of Eating Disorders, 39(6), 509-515.

Smith, E. & Rieger, E. (2009). The effect of attentional training on body dissatisfaction and dietary restriction. European Eating Disorders Review, 17(3), 169-176.

Smith, E. & Rieger, E. (2010). An investigation of the effect of body dissatisfaction on selective attention toward negative shape and weight-related information. International Journal of Eating Disorders, 43(4), 358-364.

Schober, I., Renwick, B., de Jong, H., Kenyon, M., Sharpe, H, Jacobi, C., & Schmidt, U. (2014). Threat-related attentional bias in anorexia nervosa. International Journal of Eating Disorders, 47(2), 168-173.

Shafran, R., Lee, M., Cooper, Z., Palmer, R.L., & Fairburn, C.G. (2007). Attentional bias in eating disorders. International Journal of Eating Disorders, 40(4), 369-380.

Shafran, R., Lee, M., Cooper, Z., Palmer, R.L., & Fairburn, C.G. (2008). Effect of psychological treatment on attentional bias in eating disorders. International Journal of Eating Disorders, 41(4), 348-354.

Shane, M.S., & Peterson, J.B. (2007). An evaluation of early and late stage attentional processing of positive and negative information in dysphoria. Cognition & Emotion, 21(4), 789-815.

Shank, L.M., Tanofsky-Kraff, M., Nelson, E.E., Shomaker, L.B., Ranzenhofer, L.M., Hannallah, L.M., Field, S.E., Vannucci, A., Bongiorno, D.M., Brady, S.M., Condarco, T., Demidowich, A., Kelly, N.R., Cassidy, O., Simmons, E.K., Engel, S.G., Pine, D.S., & Yanovsky, J.A. (2015). Attentional bias to food cues in youth with loss of control eating. Appetite, 87, 68-75.

Sinclair, J.M., Garner, M., Pasche, S.C., Wood, T.B., & Baldwin, D.S. (2016). Attentional biases in patients with alcohol dependence: influence of coexisting psychopathology. Human Psychopharmacology, 31(6), 395-401.

Spiegelhalder, K., MD, Kyle, S.D., Feige, B., Prem, M., Nissen, C., Espie, C.A., & Riemann, D. (2010). The impact of sleep-related attentional bias on polysomnographically measured sleep in primary insomnia. Sleep, 33(1), 107-112.

Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-661.

Svaldi, J., Brand, M., & Tuschen-Caffier, B. (2010). Decision-making impairments in women with binge eating disorder. Appetite, 54(1), 84-92.

Szymura, B. (2007). Temperament uwagi. Krakow: Wydawnictwo Universitatis.

Tchanturia K. (2014). Cognitive Remediation Therapy (CRT) for eating and weight disorders. New York, NY: Routledge.

Tchanturia, K. & Hambrook, D. (2010). Cognitive remediation therapy for anorexia nervosa. In C.M. Grilo, & J. E. Mitchell (eds.), The Treatment of Eating Disorders (pp. 130-149). New York, NY, US: Guilford Press.

Tchanturia, K., Harrison, A., Davies, H., Roberts, M., Oldershaw, A., Nakazato, M., Stahl, D., Morris, R., Schmidt, U., & Treasure, J._(2011). Cognitive flexibility and clinical severity in eating disorders. PLoS ONE, 6(6), e20462.

Vitousek, K., & Hollon, S.D. (1990). The investigation of schematic content and processing in eating disorders. Cognitive Therapy and Research, 14(2), 191-214.

Warschburger, P., Calvano, C., Richter E.M., & Engbert, R. (2015). Analysis of attentional bias towards attractive and unattractive body regions among overweight males and females: An eye-movement study. PLoSONE, 10(10), e0140813.

Wells, A., & Matthews, G. (1994). Attention and emotion: A clinical perspective. Hove, UK: Lawrence Erlbaum Associates.

Wenzel, A., & Holt, C.S. (1999). Dot probe performance in two specific phobias. British Journal of Clinical Psychology, 38(4), 407-410.

Werthmann, J., Jansen, A., & Roefs, A. (2015). Worry or craving? A selective review of evidence for food-related attention biases in obese individuals, eating-disorder patients, restrained eaters and healthy samples. Proceedings of the Nutrition Society, 74(2), 99-114.

Werthmann, J., Renner, F., Roefs, A., Huibers, M.J.H., Plumanns, L., Krott, N., & Jansen, A. (2014). Looking at food in sad mood: Do attention biases lead emotional eaters into overeating after a negative mood induction? Eating Behaviors, 15(2), 230-236.

Werthmann, J., Roefs, A., Nederkoorn, C., & Jansen, A. (2013a). Desire lies in the eyes: Attention bias for chocolate is related to craving and self-endorsed eating permission. Appetite, 70, 81-89.

Werthmann, J., Roefs, A., Nederkoorn, C., Mogg, K., Bradley, B.P., & Jansen, A. (2011). Can(not) take my eyes off it: Attentional bias for food in overweight participants.

Healthy Psychology, 30(5), 561-569.

Werthmann, J., Roefs, A., Nederkoorn, C., Mogg, K., Bradley, B.P., & Jansen, A. (2013b). Attention bias for food is independent of restraint in healthy weight individuals--An eye tracking study. Eating Behaviors, 14(3), 397-400.

Williams, J.M.G., Mathews, A., & MacLeod, C. (1996). The emotional Stroop task and psychopathology. Psychological Bulletin, 120(1), 3-24.

Wilson, C. & Wallis, D.J. (2013). Attentional bias and slowed Disengagement from food and threat stimuli in restrained eaters using a modified Stroop task. Cognitive Therapy & Research, 37(1), 127-138.

Wolz, I, Fagundo, A.B., Treasure, J., & Fernandez-Aranda, F. (2015). The processing of food stimuli in abnormal eating: a systematic review of electrophysiology. European Eating Disorders Review, 23(4), 251-261.

Wu, M., Hartmann, M., Skunde, M., Herzog, W., & Friederich, H.C. (2013). Inhibitory control in bulimic-type eating disorders: a systematic review and meta-analysis. Plos One, 8(12), e83412.

Zhu, Y., Hu, X., Wang, J., Chen, J., Guo, Q., Li, C., & Enck, P. (2012). Processing of food, body and emotional stimuli in anorexia nervosa: a systematic review and metaanalysis of functional magnetic resonance imaging studies. European Eating Disorders Review, 20(6), 439-450.

Zipfel, S., Wild, B., Grofi, G., Friederich, H.C., Teufel, M., Schellberg, D., Giel, K.E., de Zwaan, M., Dinkel, A., Herpertz, S., Burgmer, M., Lowe, B., Tagay, S., von Wietersheim, J., Zeeck, A., Schade-Brittinger, C., Schauenburg, W.H., & Herzog, W. (2014). Focal psychodynamic therapy, cognitive behaviour therapy, and optimised treatment as usual in outpatients with anorexia nervosa (ANTOP study). Randomised controlled trial. Lancet, 383(9912), 127-137.

Malgorzata Starzomska *

Institute of Psychology, Faculty of Christian Philosophy Cardinal Stefan Wyszynski University, Warsaw, Poland

* Acknowledgments: This research project was supported by a grant for maintaining research potential awarded by the Cardinal Stefan Wyszynski University in Warsaw, No. PBF-31/16. Corresponding author: Malgorzata Starzomska. Institute of Psychology, Faculty of Christian Philosophy. Cardinal Stefan Wyszynski University. Woycickiego 1/3, building No. 14, 01-938 Warsaw, Poland. Telephone: +48 (504217443). E-mail: eltram@life.pl

Caption: Figure 3. Schematic of attentional bias modification study evaluating treatment efficacy and stress vulnerability (source: Bar-Haim, 2010, p. 861, with the publisher's permission).
Figure 1. Three components of attentional bias and their testing
with the dot probe task (based on Frewen et al., 2008, with the
publisher's permission).

It is impossible to distinguish
between vigilance for threat
(initial orienting) and
disengagement from threat
(attentional dwell time)

Condition A
(Threat Facilitation)

Subject attending threat
stimulus, probe appears in
place of threat, RT should
be fast.

Condition B
(Threat Disengagement)

Subject attending threat
stimulus, probe appears in
place of neutral stimulus,
RT should be slower,
because of added time
required to shift attention.

Condition C
(Threat Avoidance)

Subject attending neutral
stimulus, probe appears In
place of neutral stimulus,
RT should be fast.

Figure 2. Modification of the dot probe task.

Condition A
(Threat Facilitation)

Subject attending threat
stimulus, probe appears in
place of threat, RT should
be faster than RT for
baseline trials.

Condition B
(Threat Disengagement)

Subject attending threat
stimulus, probe appears in
place of neutral stimulus,
RT should be slower than
RT for baseline trials,
because of added time
required to shift attention.

Condition C
(Threat Avoidance)

Subject attending neutral
stimulus, probe appears in
place of neutral stimulus,
RT should be fast.
COPYRIGHT 2017 Sociedad Espanola de Psicologia Experimental (SEPEX)
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2017 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Starzomska, Malgorzata
Publication:Psicologica
Date:Jul 1, 2017
Words:23982
Previous Article:El efecto de la carga cognitiva y la congruencia de las consecuencias sobre el efecto de la predictibilidad aprendida en el aprendizaje predictivo...
Next Article:Diferencias en la activacion cerebral en la recuperacion de recuerdos autobiograficos especificos y categoricos: Un estudio con EEG.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters