Printer Friendly

Antiretroviral therapy immunologic non-response in a Brazilian population: association study using pharmaco- and immunogenetic markers.


The introduction of antiretroviral therapy (ART) in the clinical practice saved millions of lives from acquired immunodeficiency syndrome (AIDS) related deaths, which is the result of chronic infection by the human immunodeficiency virus type 1 (HIV-1). (1,2) ART regimens are combinations of three drugs. For several years, the first-line regimens usually included two nucleoside analog reverse transcriptase inhibitors (NRTIs) and a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI). Currently, integrase inhibitors (INI) are being recommended instead of NNRTI or PI, with the objective of suppressing viral replication. (3,4)

With viral suppression, replenishment of lost CD4+ T cells typically happens in a biphasic manner: a rapid proliferation during the first three to six months of ART, caused by memory T cells redistribution, followed by a slower proliferation phase by naive T cells production by the thymus. (5) However, some patients do not present optimal CD4+ T cells gains, even with persistent viral suppression. This phenomenon is named immunological failure or immunological non-response, and it is associated with higher risk of non-AIDS cardiovascular disease, liver and kidney disorders, in addition to early aging. (6-9)

The immunological non-response has not yet been completely elucidated. Older age, male sex, advanced HIV-1 infection at treatment start and coinfections by other viruses are some known risk factors, (5,10,11) but the influence of host genetic component is still debated. Promising genetic candidates include genes involved in antiretroviral drugs pharmacodynamic pathways (12,13) and genes involved in immune functions (inflammation, apoptosis) and homeostasis, such as the interleukins IL2, IL7 and IL15, which coordinate T cell proliferation. (14)

Our hypothesis was that genetic variation in these genes would affect the distribution of antiretroviral drugs, possibly favoring residual (undetected) virus replication, which in turn would drive immune activation and immune cell death, hampering CD4+ T cell recovery. Simultaneously, single nucleotide polymorphisms (SNPs) in the immune system genes would favor this increased cell activation, increased apoptosis or decreased cell proliferation, leading to suboptimal immunological response to ART. So, we aimed at identifying genetic variants associated with delayed CD4+ T cell counts recovery to quasi-normal or normal levels.

Material and methods


A total of 176 (91 females, 51.7% and 85 males, 48.3%) HIV-1 infected patients receiving care at Instituto de Medicina Integral Professor Fernando Figueira (IMIP)were recruited in Recife and nearby cities, Pernambuco state, Northeast Brazil, for a case-control, observational study between 2011 and 2015.

Inclusion criteria were: age over 18 years old, not reporting illicit drug use, and not being pregnant. Informed consent to participate in the study and to have the medical charts reviewed was obtained from all included participants. A peripheral blood samplewas collected from each patient. IMIP Research Ethics Committee approved the study protocol (number 3629-13).

Each patient answered a standard questionnaire about sex, age and age at ART start, socioeconomic status, smoking, and drinking habits. The data extracted from medical charts covered the whole period between the first and last plasma viral load (pVL) and CD4+ T cell absolute counts and percentage (relative to all white blood cells) measurements (retrospective follow-up).

Other abstracted data included ART regimens received and their refill prescriptions and serological status for the following etiologic agents: HBV, HCV, CMV (IgG and IgM), HTLV-1/2, Toxoplasma gondii (IgG and IgM) and Treponema pallidum (VDRL) and occasional AIDS-defining conditions following the Centers for Disease Control (CDC) 1993 Revised Classification System. (15)

Patient classification

All patients achieved persistent viral suppression, which was defined as maintaining undetectable (also known as "target not detected") plasma viral load measurements (pVL < 50 copies/mL as measured by RT-PCR). Current pVL quantification methods adopted in Brazil, such as Abbott RealTime HIV-1 Viral Load Assay (16) have detection limits of 40 copies/mL, but since our sample is retrospective, we adopted the 50 copies threshold to account for measurements using earlier methods. No patient presented viral load rebound, which was defined as two consecutive pVL > 1000 copies/mL at any time after initial suppression, according to Brazil's Ministry of Health's guidelines at the time of patients' recruitment. (17) In the study setting, pVL measurements, CD4+ T cell counts and other laboratory tests were generally performed every three or four months, at the physician's discretion.

mmunologic response was defined as CD4+ T cell percentage achieving 30% or higher for two consecutive measurements during follow-up and immunological non-response if otherwise, following Brazilian Ministry of Health's guidelines. (17) If a patient already had pre-ART CD4+ T cell percentages >30% (early start patients), immunological response was considered as an absolute gain of 200 cells/[micro]L, according to a previous study. (5) CD4+ T cell percentages were preferred instead of absolute counts because percentages are less variable over time. (18)

Thus, 67 patients were categorized into immunological non-response and 109 into immunological response groups and their follow-up duration was recorded for further survival analysis.

SNPs selection and genotyping

Genes and SNPs were selected through literature search and functional criteria. We selected 46 SNPs distributed in 19 genes of antiretroviral pharmacodynamic pathways: ABCB1 (rs1128503, rs2214102, rs2235048 and rs3842), ABCC1 (rs129081, rs113264879, rs4148380, rs8056298, rs212091 and rs16967632), ABCG2 (rs115770495, rs1448784 and rs2231142), CYP1A2 (rs762551), CYP2A6 (rs8192726), CYP2B6 (rs8192709, rs28399499, rs34097093, rs28399502, rs707265 and rs1042389), CYP3A4 (rs4646437), SLC22A6 (rs11568629, rs11568628 and rs4149170) and NR1I3 (rs3003596) (19-27) and immunological activation and homeostasis: CCL5 (rs2107538), FAS (rs2234767 and rs1800682), IFNG (rs2069709), IL10 (rs2222202, rs1800871 and rs1800890), IL10RA (rs3135932 and rs9610), IL15 (rs10519613 and rs10833), IL1B (rs16944), IL2 (rs2069762), IL4 (rs2243250), IL7R (rs1494555, rs11567762, rs6897932, rs3822731, rs987106 and rs3194051). (28-30)

Additionally, 48 SNPs that served as ancestry informative markers (AIMs) were also genotyped (all variants are listed on Supplementary Table 1). Briefly, these SNPs help estimating ancestry proportions in admixed populations such as the one enrolled in our study, controlling for population structure and reducing bias during genetic association analysis. (31) Genomic DNA was extracted through Promega[R] Wizard Genomic DNA Purification Kit (Fitchburg, Wisconsin, USA), following manufacturer's instructions. Genotyping was performed through VeraCode[R] platform of GoldenGate[R] Illumina Inc (San Diego, California, USA) technology, following manufacturer's instructions.

Raw genotyping data were extracted with Illumina[R] Genome Studio 2.0 software and exported to an Excel[R] worksheet. After processing, the dataset was exported into PLINK software, version 1.9032 to perform quality control (QC) filtering. Samples and variants with less than 90% global call rates were removed from further analysis. Variants with significant departure from Hardy-Weinberg equilibrium were also removed, using an exact test with p-value<0.001 as threshold.

Ancestry proportion estimation

We used ADMIXTURE software33 to carry out a "supervised analysis" allowing estimation of ancestry proportions in our admixed samples, using 2000 bootstrap steps with the AIMs panel mentioned above. The calculations were made assuming three different ancestral populations (K = 3; African, Amerindian, and European).

Statistical analysis

Comparisons between immune non-response and immune response groups were performed through Fisher's exact test or Chi-square test for categorical variables (sex, ART regimens, genetic association tests) and Mann-Whitney test for continuous variables (age and pre-ART CD4+ T cell absolute counts). Age at ART startwas also treated as a categorical variable with four strata: 18-29 years, 29-39 years, 39-49 years, and 49 years or more.

Additionally, univariate survival analyses were performed through Kaplan-Meier survival probability estimator having time to immune response as the dependent variable. Estimators for each variable were then compared through Cox-Mantel log rank test to assess if they exerted statistically significant influence on the dependent variable.

Alleles and genotypes counts and frequencies were obtained through direct counting. Compliance to Hardy-Weinberg equilibrium was also assessed through Chi-square test. All tests were two-sided. The variables (with the exception of coinfections serological status, smoking and drinking habits--data not shown here- for the last two --and AIDS-defining conditions were not included in further analyses due to high prevalence of missing data--over 10% of data points, to avoid the introduction of bias into the model) were included in a multivariate survival analysis Cox proportional hazards model to assess which variables would independently influence immune response. All analyses were performed with R software, version 3.3.1. (34)


Patients' characteristics

The individuals in our sample presented a major European ancestry contribution (mean proportion 55.2[+ or -]18.5%), followed by African (32.3[+ or -]16.4%) and Amerindian (12.4[+ or -]10.5%), as expected, due to our previous works with other samples of the same general population. (31)

The median age at treatment start was 33 years old (interquartile range, IQR = 27-39), and the patients tended to start ART with relatively low CD4+ T cell counts/[micro]L of peripheral whole blood (median = 272, IQR = 127.5-432.5), and 29.5% of the patients started with less than 200 cells/[micro]L. In contrast, only 10.8% of the patients started with more than 500 cells/[micro]L. Similarly, CD4 percentages relative to total lymphocyte count were also low, (median = 19.4%, IQR = 12.4-27.5%), and only 13.1% of the patients started therapy with more than 30% CD4+ T cells. Most AIDS-defining conditions diagnoses were not available (67.6%) in the medical charts, but at least 22.1% of the patients started ART with C stage conditions.

Regarding ART regimens, the majority of the patients received zidovudine + lamivudine (AZT + 3TC) as first line NRTI backbone following the guidelines at that moment (68.2%), followed by tenofovir + lamivudine (TDF + 3TC, 19.9%) and abacavir + lamivudine (ABC + 3TC, 0.6%). AZT monotherapy was the starting treatment for 2.8% of the patients, and information on the first regimen received was not available for 8.5% of the patients. The third drug option was mostly a NNRTI (53.5%), such as efavirenz (EFZ) or nevirapine (NVP), and ritonavir boosted PI such as lopinavir or atazanavir (LPV/r or ATV/r) prescribed to 35.2% of the patients. Table 1 also displays univariate comparison of patients' characteristics.

Univariate analysis of patients' characteristics

Males had more than two-fold increased risk of presenting immunological non-response (61.2% non-responders and 40.4% responders; odds ratio (OR) = 2.32; 95% CI = 1.20-4.56; p = 0.01). Both groups had similar ages at treatment start (median 34 years and 33 years, respectively; p = 0.45). As expected, non-responders started treatment with lower absolute CD4+ T cell count than responders (median 179 cells/[micro]L vs. 342.5 cells/[micro]L, respectively, p < 0.001), and most non-responders started therapy with less than 200 cells/[micro]L (49.2% vs. 17.4%; p < 0.001). Patients in both groups had similar ancestry backgrounds (mean African ancestry proportion 33.5% in non-responders vs. 31.7% in responders, p = 0.68).

Non-responders started treatment with more advanced disease than responders; 31.3% of non-responders presented C (AIDS-indicator conditions) CDC system stage vs. 16.5% of responders, although the difference did not reach statistical significance (p = 0.28).

Patients started with similar first-line ART regimens (p = 0.20). There was neither difference in the frequency of NNRTI and PI (p = 0.40) as third drug nor AZT+ 3TC and TDF + 3TC (p = 0.56) as backbones.

The median time on treatment and of laboratory tests was 33 months (IQR = 19.8-60.5). As expected, ART greatly benefited patients. Aggregating laboratorymeasurements from the last observation in each patient, the median CD4+ T cell count rose to 578.5 cells//[micro]L of blood (IQR = 393.2-807.5), an increment by nearly 113% from pre-ART values mentioned above (p < 0.001). Similarly, CD4+ T cell percentages rose to 36.7% (IQR = 23.0-35.8), an increment by nearly 62% (p < 0.001). These post-ART changes are summarized in Table 2.

The median time to achieve immunologic response was 47 months (95% CI = 36-64). The time for men and women to achieve immunologic response was almost the same with a median time of 48 months (95% CI = 36-110) for men and 46 months (95% CI = 30-66) for women (p = 0.42). Age groups at ART start was neither associated with time until immunologic response (p = 0.67). Similarly, use of AZT instead of TDF (p = 0.11) or PIs instead of NNRTIs as third drug (p = 0.14) on ART regimens also did not influence time until response.

Serological tests results were not recorded in medical charts of the majority of patients. Although about 65% of the patients did not results for CMV and toxoplasmosis infections, the prevalence of positive IgG was 33.5% for CMV and 27.8% for toxoplasmosis. Syphilis VDRL positivity rate was 13.6% of the total (34.7% untested); 25.0% were immune to hepatitis B virus (HBV) due to vaccination, 5.7% due to natural infection, and the remaining 26.1%were susceptible, but none presented chronic infection (43.2% untested). No patient was positive for anti-HTLV-1/2 (79.5% untested); a single case of anti-HCV positive was detected (47.7% untested). Table 3 details the serological tests results.

Genotyping quality control (QC), ancestry estimation and genetic association testing

Two candidate SNPs, rs11568629 (SLC22A6) and rs16967632 (ABCC1) and four AIMs did not pass genotyping QC and were removed from further analysis. Other variant, rs34097093 (CYP2B6),was also removed because all individuals in the sample had the same genotype (one of the alleles was fixed). The remaining allele and genotype frequencies were all in conformity to Hardy-Weinberg equilibrium according to PLINK software exact test. All frequencies and global call rates are displayed in Supplementary Table 2. Therefore, further analyses were performed using the remaining 43 candidate SNPs and 44 AIMs.

Five SNPs presented statistic association with immunological outcome. Three minor alleles were more frequent in non-responders than responders: rs2243250 (IL4) A allele (48.0% vs. 37.0%, p = 0.04), rs1128503 (ABCB1) A allele (40.0% vs. 28.0%, p = 0.03) and rs707265 (CYP2B6) A allele (40.0% vs. 23.0%, p = 0.02), whereas the other twoweremore frequent in responders: rs2069762 (IL2) C allele (15.0% vs. 30.0%; p = 0.004) and rs4646437 (CYP3A4) A allele (26.0% vs. 34.0%; p = 0.04). Allele, genotype frequencies and statistical analyses for these five SNPs are displayed in Table 4 and Supplementary Table 3 displays all genetic association results.

Since non-responders and responders had similar ancestry proportions (for example, mean African contribution 33.5[+ or -]18.5% vs. 31.7[+ or -]15.0%, respectively; p = 0.68), we believe that there is no hidden genetic structure biasing the genetic association analysis. As mentioned in the next session, individual African genetic ancestry contributions were included in the multivariate Cox proportional hazards model for an additional "genomic control". (35)

Multivariate analysis

The multivariate Cox proportional hazards analysis suggested that starting ART with less than 200 CD4+ T cells/[micro]L, IL2 rs2069762 genotypes, ABCB1 rs1128503 genotypes and PI/r use were significantly associated with time to immune response.

Individuals starting ART with less than 200 CD4+ T cells/[micro]L had 61% lower chance of achieving immunologic response when compared with those who started ART with more than 200 CD4+ T cells/[micro]L (HR = 0.39, 95% CI = 0.21-0.74, adjusted p = 0.004). IL2 rs2069762 C/C genotype had an eight-fold higher probability of achieving immunologic response when compared to A/A genotype (HR = 8.60, 95% CI = 2.06-35.89, adjusted p = 0.003) during the follow-up period. ABCB1 rs1128503 A/A genotype was associated with 71% lower chance of achieving immunologic response when compared with G/G genotype (HR = 0.29, 95% CI = 0.15-0.58, adjusted p = 0.0004). Using an ART regimen containing PI/r had almost two-fold higher probability of achievingimmunologic response (HR = 1.89, 95% CI = 1.03-3.50, adjusted p = 0.04).

On the other hand, sex (adjusted p = 0.51), genetic background (adjusted p = 0.85), age at treatment start (adjusted p = 0.82), IL4 rs2243250, CYP3A4 and CYP2B6 SNPs, use of AZT as NRTI backbone, and events of detectable pVL following viral suppression were not significantly associated with probability to immune response on multivariate analysis. The multivariate analysis results are summarized in Table 5.


ART, when taken correctly with good adherence, suppresses HIV-1 replication, decrease immune activation, favors immune recovery, and protects against opportunistic infections. (36,37) However, some patients fail to recover CD4+ T cell numbers to normal or quasi-normal levels (immunological failure or non-response), being at risk for non-AIDS diseases, such as cardiovascular, kidney and liver disorders (5) and premature aging. (8,9) Thus, we performed a genetic association study through survival analysis to assess if polymorphisms in antiretroviral drugs pharmacodynamic pathways and immune system homeostasiswere related with immunological failure in a sample from Recife, Northeast Brazil.

The observed prevalence of immunological non-response was 38.1%, which was is in concordance with some estimates found in the literature, ranging between 10% and 40%. (38)

Our sample comprises people with lower socioeconomic status with less access to sexual education and healthcare. The diagnosis of HIV-1 infection in this population is usually delayed or very delayed and, therefore, ART tend to be initiated when absolute CD4+ T cells counts are low, with advanced disease and presenting symptoms of opportunistic infections. A very compromised immune system by chronic HIV-1 infection predisposes to immunologic non-response, (39) and indeed we observed that non-responders begun treatment with lower absolute CD4+ T cell counts, with almost half of them starting treatment with less than 200 cells/[micro]L.

Previous reviews also reported that male sex, older age (38) and HCV coinfection are risk factors for immune non-response. (40,41) We only found an association between male sex and immune failure in univariate analysis, but this association was lost in multivariate survival analysis. We also assessed HCV infection status alongside other agents (CMV, HBV, HTLV-1/2, toxoplasmosis, and syphilis), but the high prevalence of untested subjects for most of these infections hindered further analysis, since it could bias the results with sample size restriction. However, we believe that HCV and HTLV-1/2 had very low prevalence in our sample (no case of positive HTLV-1/2 and a single case of HCV infection among those available), and therefore they are unlikely to play a role on immunological outcome in the present study sample our sample. Moreover, no case of chronic HBV-infection was detected, whereas there were some individuals with anti-HBV immunity due to past infections and vaccination. We also found some individuals with latent CMV infection (positive IgG), a known causative agent of persistent immune activation, (42) which can cause immune system exhaustion, (43) but we cannot affirm if it was a factor favoring immune non-response in our sample, as it would be too speculative, since our serological data status was mostly lacking, as discussed above.

Sex and pre-ART CD4+ T cell counts were the only non-genetic differences between our study groups, since the individuals in our sample had similar ethnic backgrounds (as estimated by AIMs), and ART regimen types and distribution were alike between groups. Therefore, we expected to find genetic risk factors to immunologic non-response. We genotyped 46 candidate SNPs located in genes involved on antiretroviral drugs metabolism and transport and in genes involved on immune response. We found five SNPs associated --three with susceptibility to non-response and two with favorable response.

Two of the three SNPs associated with non-response are located in genes related to drug metabolism: CYP2B6 and ABCB1. The former is a protein fromamembrane hemoprotein superfamily that is collectively involved in the metabolism of antiretroviral drugs and several others (12) and the latter is a membrane active transport protein that ejects antiretroviral drugs from cells. (44) The third is located at IL4 gene, which is involved in a polyfunctional immunoregulatory signal. (45) One of two SNPs associated with favorable response is located at a gene related to immune system homeostasis, important for T and B cells proliferation, IL2, (46) and the other is located in CYP3A4, another gene of drug-metabolizing CYP450 protein. (12)

We expected that SNPs in these genes would work in concert to affect gene function, altering distribution of antiretroviral drugs, and having deleterious consequences on immune function, leading to suboptimal immunological response to ART. However, all genetic associations were lost significance after multivariate survival analysis modeling. As other authors have not found associations focusing on the same or similar genes (47) while others did have (48) (for a review of previous genetic association studies, refer to (38)), more studies are necessary to unravel the genetic component of ART immunological non-response.

In conclusion, we performed a genetic association study looking for genetic variants that would explain suboptimal gains of CD4+ T cell counts in some individuals in a retrospective observational sample of individuals living with HIV-1 receiving ART from Northeast Brazil, and elaborated a multivariate statistical model for the prediction of immune response. More studies are necessary, in order to continuously refine the predictive model of immunological response, consequently improving HIV-1 infection care, and perhaps preventing complications seceondary to immunological non-response, such as systemic diseases and/or premature aging.


This work was supported by APQ-0568-2.02/10 and APQ-0599-2.02/14 grants and BFP-0018-2.02/17 scholarship from Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco (FACEPE), 442225/2014-8 grant by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and BEX-7715/15-3; BEX-7711/15-8; BEX-7714/15-7 scholarships from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES). The authors thank the IRCCS Burlo Garofolo (Trieste, Italy) for Illumina VeraCode[R] analysis financial support.

Conflicts of interest

The authors declare no conflicts of interest.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at


(1.) De Cock KM, Jaffe HW, Curran JW. Reflections on 30 years of AIDS. Emerg Infect Dis. 2011;17:1044-8.

(2.) World Health Organization. 2015 Progress Report on the Global Plan towards the elimination of new HIV infections among children and keeping their mothers alive; 2015.

(3.) Vella S, Schwartlander B, Sow SP, Eholie SP, Murphy RL. The history of antiretroviral therapy and of its implementation in resource-limited areas of the world. AIDS. 2012;26:1231-41.

(4.) Brasil, MINISTERIO DA SAUDE, Departamento de Vigilancia, Prevencao e Controle das Infeccoes Sexualmente Transmissiveis. Protocolo Clinico e Diretrizes Terapeuticas para Manejo da Infeccao pelo HIV em Adultos. Brasilia: Editora MS; 2017. p. 412.

(5.) Li T, Wu N, Dai Y, et al. Reduced thymic output is a major mechanism of immune reconstitution failure in HIV-infected patients after long-term antiretroviral therapy. Clin Infect Dis. 2011;53:944-51.

(6.) Teixeira L, Valdez H, McCune JM, et al. Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS. 2001;15:1749-56.

(7.) Tan R, Westfall AO, Willig JH, et al. Clinical outcome of HIV-infected antiretroviral-naive patients with discordant immunologic and virologic responses to highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2008;47:553-8.

(8.) Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? J Gerontol A Biol Sci Med Sci. 2014;69:833-42.

(9.) Torres RA, Lewis W. Aging and HIV/AIDS: pathogenetic role of therapeutic side effects. Lab Invest. 2014;94:120-8.

(10.) Marziali M, De Santis W, Carello R, et al. T-cell homeostasis alteration in HIV-1 infected subjects with low CD4 T-cell count despite undetectable virus load during HAART. AIDS. 2006;20:2033-41.

(11.) Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505:509-14.

(12.) Telenti A, Zanger UM. Pharmacogenetics of anti-HIV drugs. Annu Rev Pharmacol Toxicol. 2008;48:227-56.

(13.) Tozzi V. Pharmacogenetics of antiretrovirals. Antiviral Res. 2009;85:190-200.

(14.) Levy Y. Cytokine-based modulation of immune function in HIV infection. Curr Opin HIV AIDS. 2006;1:69-73.

(15.) CDC. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep. 1992;41:1-19.

(16.) Tang N, Huang S, Salituro J, et al. A RealTime HIV-1 viral load assay for automated quantitation of HIV-1 RNA in genetically diverse group M subtypes A-H, group O and group N samples. J Virol Methods. 2007;146:236-45.

(17.) Brasil. Ministerio da Saude. Secretaria de Vigilancia em Saude. Departamento de DST AeHV. Protocolo Clinico e Diretrizes Terapeuticas para Prevencao da Transmissao Vertical de HIV, Sifilis e Hepatites Virais. Brasilia: Ministerio da Saude: Ministerio da Saude, Secretaria de Vigilancia em Saude, Departamento de DST, Aids e Hepatites Virais; 2015.

(18.) Hulgan T, Raffanti S, Kheshti A, et al. CD4 lymphocyte percentage predicts disease progression in HIV-infected patients initiating highly active antiretroviral therapy with CD4 lymphocyte counts >350 lymphocytes/[mm.sub.3]. J Infect Dis. 2005;192:950-7.

(19.) Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet. 2002;359:30-6.

(20.) Brumme ZL, Dong WW, Chan KJ, et al. Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS. 2003;17:201-8.

(21.) Cressey TR, Lallemant M. Pharmacogenetics of antiretroviral drugs for the treatment of HIV-infected patients: an update. Infect Genet Evol. 2007;7:333-42.

(22.) Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116:496-526.

(23.) Gatanaga H, Hayashida T, Tsuchiya K, et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007;45:7-1230.

(24.) Jung N, Lehmann C, Rubbert A, et al. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos. 2008;36:1616-23.

(25.) Haas DW, Gebretsadik T, Mayo G, et al. Associations between CYP2B6 polymorphisms and pharmacokinetics after a single dose of nevirapine or efavirenz in African Americans. J Infect Dis. 2009;199:872-80.

(26.) Franke RM, Gardner ER, Sparreboom A. Pharmacogenetics of drug transporters. Curr Pharm Des. 2010;16:220-30.

(27.) Swart M, Whitehorn H, Ren Y, Smith P, Ramesar RS, Dandara C. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients. BMC Med Genet. 2012;13:112.

(28.) Nasi M, Pinti M, Bugarini R, et al. Genetic polymorphisms of Fas (CD95) and Fas ligand (CD178) influence the rise in CD4+ T cell count after antiretroviral therapy in drug-naive HIV-positive patients. Immunogenetics. 2005;57:628-35.

(29.) Smith AJ, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev. 2009;20:43-59.

(30.) Chew CS, Cherry CL, Kamarulzaman A, Yien TH, Aghafar Z, Price P. A longitudinal study of the effects of ART on plasma chemokine levels in Malaysian HIV patients. Dis Markers. 2011;31:303-9.

(31.) Coelho AVC, Moura RR, Cavalcanti CAJ, et al. A rapid screening of ancestry for genetic association studies in an admixed population from Pernambuco Brazil. Genet Mol Res. 2015;14:2876-84.

(32.) Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

(33.) Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655-64.

(34.) R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. Available from:

(35.) Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7:781-91.

(36.) Hutchinson JF. The biology and evolution of HIV. Annu Rev Anthropol. 2001;30:85-108. Article Type: research-article/Full publication date: 2001/Copyright [c] 2001 Annual Reviews.

(37.) Bartlett JA, DeMasi R, Quinn J, Moxham C, Rousseau F. Overview of the effectiveness of triple combination therapy in antiretroviral-naive HIV-1 infected adults. AIDS. 2001;15:1369-77.

(38.) Peraire J, Vilades C, Pacheco YM, et al. Evaluation of the pharmacogenetics of immune recovery in treated HIV-infected patients. Expert Opin Drug Metab Toxicol. 2014;10:81-101.

(39.) Gaardbo JC, Hartling HJ, Gerstoft J, Nielsen SD. Incomplete immune recovery in HIV infection: mechanisms relevance for clinical care, and possible solutions. Clin Dev Immunol. 2012;2012:670957.

(40.) Miller MF, Haley C, Koziel MJ, Rowley CF. Impact of hepatitis C virus on immune restoration in HIV-infected patients who start highly active antiretroviral therapy: a meta-analysis. Clin Infect Dis. 2005;41:713-20.

(41.) Brites-Alves C, Netto EM, Brites C. Coinfection by hepatitis c is strongly associated with abnormal CD4/CD8 ratio in HIV patients under stable ART in Salvador, Brazil. J Immunol Res. 2015;2015:174215.

(42.) Sylwester AW, Mitchell BL, Edgar JB, et al. Broadly targeted human cytomegalovirus-specific CD4(+) and CD8(+) T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202:673-85.

(43.) Khaitan A, Unutmaz D. Revisiting immune exhaustion during HIV infection. Curr HIV/AIDS Rep. 2011;8:4-11.

(44.) Kis O, Robillard K, Chan GNY, Bendayan R. The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci. 2010;31:22-35.

(45.) Paul WE. History of interleukin-4. Cytokine. 2015;75: 3-7.

(46.) Liao W, Lin J-X, Leonard WJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23:598-604.

(47.) Fernandez S, Rosenow AA, James IR, et al. Recovery of CD4+ T cells in HIV patients with a stable virologic response to antiretroviral therapy is associated with polymorphisms of interleukin-6 and central major histocompatibility complex genes. JAIDS. 2006;41:1-5.

(48.) Haas DW, Geraghty DE, Andersen J, et al. Immunogenetics of CD4 lymphocyte count recovery during antiretroviral therapy: an AIDS Clinical Trials Group study. J Infect Dis. 2006;194:1098-107.

Antonio V.C. Coelho (a,*), Ronald R. de Moura (a), Rafael L. Guimaraes (a,b), Lucas A.C. Brandao (b,c), Sergio Crovella (a,d)

(a) Universidade Federal de Pernambuco, Departamento de Genetica, Recife, PE, Brazil

(b) Universidade Federal de Pernambuco, Laboratorio de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil

(c) Universidade Federal de Pernambuco, Departamento de Patologia, Recife, PE, Brazil

(d) Uiversita degli studi di Trieste, IRCCS Burlo Garofolo, Trieste, Italy


Article history:

Received 2 July 2018

Accepted 20 September 2018

Available online 28 October 2018

(*) Corresponding author.

E-mail address: (A.V. Coelho).
Table 1--Pre-treatment characteristics of study subjects according to
antiretroviral therapy immunologic response.

Variables              Total (n = 176)    Immunologic       Immunologic
                                          non-responders    responders
                                          (n = 67)          (n = 109)

Sex, n (%)
  Females               91 (51.7)          26 (38.8)         65 (59.6)
  Males                 85 (48.3)          41 (61.2)         44 (40.4)

Ancestry proportions estimated by AIMs, mean percentage (SD)
  African               32.3 (16.4)        33.5 (18.5)       31.7 (15.0)
  Amerindian            12.4 (10.5)        12.3 (9.2)        12.5 (11.2)
  European              55.2 (18.5)        54.3 (19.8)       55.8 (17.7)

Age at ART start date
  Median (IQR)          33 (27-39)         34 (28-40)        33 (27-38)

Pre-ART CD4+ T cell counts, cells/[micro]L of peripheral whole blood
  Median (IQR)         272 (127.5-432.5)  179 (94.5-279.5)  342.5

By categories, n (%)
  Not available         37 (21.0)          12 (18.0)         25 (22.9)
  Less than 200         52 (29.5)          33 (49.2)         19 (17.4)
  Between 200 and 350   39 (22.2)          13 (19.4)         26 (23.9)
  Between 350 and 500   29 (16.5)           9 (13.4)         20 (18.4)
  Over 500              19 (10.8)           0 (0.0)          19 (17.4)

Pre-ART CD4+ T cell percentages, relative to total lymphocyte count
  Median (IQR)          19.4 (12.4-27.5)   11.8 (7.0-17.0)   23.8

By categories, n (%)
  Not available         48 (27.3)          23 (34.3)         25 (22.9)
  30% or less          105 (59.6)          43 (64.2)         62 (56.9)
  Over 30%              23 (13.1)           1 (1.5)          22 (20.2)

Pre-ART AIDS-defining conditions according to CDC classification system,
frequency (%)
  Not available        119 (67.6)          40 (59.7)         79 (72.5)
  A stage                1 (0.6)            0 (0.0)           1 (0.9)
  B stage               17 (9.7)            6 (9.0)          11 (10.1)
  C stage               39 (22.1)          21 (31.3)         18 (16.5)

First ART regimens, frequency (%)
  Not available         15 (8.5)            6 (8.9)           9 (8.2)
  Monotherapy            5 (2.8)            1 (1.5)           4 (3.7)

Detailed regimens: [NRTI] + 3TC [third option]
  ABC+ 3TC EFZ           1 (0.6)            1 (1.5)           0 (0.0)
  AZT+ 3TC ATV/r         6 (3.4)            2 (3.0)           4 (3.7)
  AZT+ 3TC EFZ          55 (31.3)          22 (32.8)         33 (30.3)
  AZT+ 3TC FPV/r         1 (0.6)            1 (1.5)           0 (0.0)
  AZT+ 3TC IDV/r         1 (0.6)            1 (1.5)           0 (0.0)
  AZT+ 3TC LPV/r        49 (27.8)          17 (25.4)         32 (29.3)
  AZT+ 3TC NVP           8 (4.5)            1 (1.5)           7 (6.4)
  TDF + 3TC ATV/r        4 (2.3)            0 (0.0)           4 (3.7)
  TDF + 3TC EFZ         30 (17.0)          15 (22.4)         15 (13.8)
  TDF + 3TC LPV/r        1 (0.6)            0 (0.0)           1 (0.9)

ART regimens, stratified by [third option]
  NNTRI                 94 (53.5)          39 (58.2)         55 (50.5)
  PI/r                  62 (35.2)          21 (31.4)         41 (37.6)

[NRTI] choice alongside 3TC
  ABC                    1 (0.6)            1 (1.5)           0 (0.0)
  AZT                  120 (68.2)          44 (65.7)         76 (69.7)
  TDF                   35 (19.9)          15 (22.4)         20 (16.7)

Variables              Univariate

Sex, n (%)
  Females              Reference
  Males                OR= 2.32 (95% CI = 1.20-4.56); p = 0.01

Ancestry proportions estimated by AIMs, mean percentage (SD)
  Amerindian           W= 3487; p = 0.68

Age at ART start date
  Median (IQR)         W= 3897.5; p = 0.45

Pre-ART CD4+ T cell counts, cells/[micro]L of peripheral whole blood
  Median (IQR)         W= 1268; p < 0.001

By categories, n (%)
  Not available        (Not included in the comparison)
  Less than 200        [X.sup.2] = 26.4; df = 3; p < 0.001
  Between 200 and 350
  Between 350 and 500
  Over 500

Pre-ART CD4+ T cell percentages, relative to total lymphocyte count
  Median (IQR)         W= 643; p < 0.001

By categories, n (%)
  Not available        (Not included in the comparison)
  30% or less          [X.sup.2] = 9.6; df = 1; p = 0.002
  Over 30%

Pre-ART AIDS-defining conditions according to CDC classification system
 frequency (%)
  Not available        (Not included in the comparison)
  A stage
  B stage              [X.sub.2] = 2.6; df = 2; p = 0.28
  C stage

First ART regimens, frequency (%)
  Not available        (Not included in the comparison)

First ART regimens, frequency (%)
  ABC+ 3TC EFZ         [X.sub.2] = 12.3;
  AZT+ 3TC ATV/r       df = 9;
  AZT+ 3TC EFZ         p = 0.20
  AZT+ 3TC FPV/r
  AZT+ 3TC IDV/r
  AZT+ 3TC LPV/r
  TDF + 3TC ATV/r
  TDF + 3TC LPV/r

ART regimens, stratified by [third option]
  NNTRI                Reference
  PI/r                 OR= 0.72 (95% CI = 0.35-1.48); p = 0.40

[NRTI] choice alongside 3TC
  ABC                  (Not included in the comparison)
  AZT                  Reference
  TDF                  OR= 1.29 (95% CI = 0.56-2.97); p = 0.56

Bold values were statistically significant values, p < 0.05.
3TC, lamivudine; 95% CI, 95% confidence interval; ABC, abacavir; AIDS,
acquired immunodeficiency syndrome; ART, antiretroviral therapy; ATV/r,
ritonavir-boosted atazanavir; CDC, Center for Disease Control (USA);
df, degrees of freedom; EFZ, efavirenz; FPV/r, ritonavir-boosted
fosamprenavir; IDV/r, ritonavir-boosted indinavir; IQR, interquartile
range; LPV/r, ritonavir-boosted lopinavir; NNRTI, non-nucleoside analog
reverse transcriptase inhibitor; NRTI, nucleoside analog reverse
transcriptase inhibitor; NVP, nevirapine; OR, odds ratio; p, p-value;
PI, protease inhibitor; SD, standard deviation; TDF, tenofovir; W,
Mann-Whitney test statistic; [X.sup.2], chi-squared test statistic.

Table 2--Post-treatment immunologic response with corresponding
observable follow-up time on therapy according to study groups.

Variables             Total (n = 176)      Immunologic      Immunologic
                                           non-responders   responders
                                           (n = 67)         (n = 109)

Observed time in therapy (months)
  Median (IQR)         33 (19.8-60.5)       32 (17-51)       33 (21-81)

CD4+ T cell counts, measurements (IQR)
  Median (IQR)        578.5 (393.2-807.5)  380 (280-487)    715

CD4+ T cell percentages, relative to total lymphocyte count
  Median (IQR)         36.7 (23.0-35.8)     22 (16.5-26.0)   34.3

Events of detectable plasma viral load (pVL [greater than or equal to]50
and <1000 copies/mL) at any time following viral suppression
  Median number of      1 (0-3)              1 (0-4)          1 (0-3)
  measurements (IQR)
  Percentage of         7.4 (0.0-18.2)      10.0 (0-23.1)     6.3
  detectable                                                 (0-16.7)
  measurements (IQR)

Variables             Univariate

Observed time in therapy (months)
  Median (IQR)        W= 3177; p = 0.15

CD4+ T cell counts, measurements (IQR)
  Median (IQR)        W= 901.5; p < 0.001

CD4+ T cell percentages, relative to total lymphocyte count
  Median (IQR)        W= 390; p < 0.001

Events of detectable plasma viral load (pVL [greater than or equal to]50
and <1000 copies/mL) at any time following viral suppression
  Median number of    W= 2816.5; p = 0.74
  measurements (IQR)
  Percentage of       W= 2955.5; p = 0.37
  measurements (IQR)

IQR, interquartile range; p, p-value; W, Mann-Whitney test statistic.

Table 3--Coinfections serological status of study subjects according to
antiretroviral therapy immunologic response.

Etiologic agent                 Total        Immunologic     Immunologic
                                n = 176 (%)  non-responders  responders
                                             n = 67 (%)      n = 109 (%)

Cytomegalovirus (CMV)

IgM test
  Untested                      115 (65.4)   53 (79.1)       62 (56.9)
  Negative                       59 (33.5)   14 (20.9)       45 (41.3)
  Positive                        2 (1.1)     0 (0.0)         2 (1.8)

IgG test
  Untested                      115 (65.4)   53 (79.1)       62 (56.9)
  Negative                        2 (1.1)     0 (0.0)        22 (1.8)
  Positive                       59 (33.5)   14 (20.9)       45 (41.3)

Hepatitis B virus (HBV)
  Untested                       76 (43.2)   35 (52.2)       41 (37.6)
  Susceptible                    46 (26.1)   13 (19.4)       33 (30.3)
  Chronic infection               0 (0.0)     0 (0.0)         0 (0.0)
  Immune due to natural          10 (5.7)     4 (6.0)         6 (5.5)
  Immune due to vaccination      44 (25.0)   15 (22.4)       29 (26.6)

Hepatitis C virus (HCV)
  Untested                       84 (47.7)   36 (53.7)       48 (44.0)
  Negative                       91 (51.7)   31 (46.3)       60 (55.0)
  Positive                        1 (0.6)     0 (0.0)         1 (1.0)

Human T-lymphotropic virus
type 1 or 2 (HTLV-1/2)
  Untested                      140 (79.5)   60 (89.5)       80 (73.3)
  Negative                       36 (20.5)    7 (10.5)       29 (26.6)
  Positive                        0 (0.0)     0 (0.0)         0 (0.0)

Toxoplasma gondii

IgM test
  Untested                      115 (65.3)   52 (77.6)       63 (57.8)
  Negative                       61 (34.7)   15 (22.4)       46 (42.2)
  Positive                        0 (0.0)     0 (0.0)         0 (0.0)

IgG test
  Untested                      115 (65.3)   52 (77.6)       63 (57.8)
  Negative                       12 (6.8)     5 (7.5)         7 (6.4)
  Positive                       49 (27.8)   10 (14.9)       39 (35.8)

Treponema pallidum (VDRL test)
  Untested                       61 (34.7)   32 (47.8)       29 (26.6)
  Negative                       91 (51.7)   24 (35.8)       67 (61.5)
  Positive                       24 (13.6)   11 (16.4)       13 (11.9)

IgM, immunoglobulin M; IgG, immunoglobulin G.

Table 4--Allele and genotype frequencies of variants showing
statistically significant genetic association with immunologic outcome.

a   SNP        Type           Alleles  Gene    Gene
                              A1  A2           function/pathway

26  rs2069762  Upstream gene  A   C    IL2     Regulates T and B
               region                          lymphocytes proliferation
38  rs2243250  Upstream gene  G   A    IL4     Immunoregulation
46  rs1128503  Synonymous     G   A    ABCB1   Membrane transport,
               (Gly412Gly)                     antiretroviral drugs
48  rs4646437  Intronic       G   A    CYP3A4  Antiretroviral drugs
89  rs707265   3'             G   A    CYP2B6  Antiretroviral drugs
               untranslated                    metabolism

a                       Allele and genotype frequencies
         Immunologic non-responders          Immunologic responders
    A2 (%)  A1/A1 (%)  A1/A2 (%)  A2/A2 (%)  A2 (%)  A1/A1 (%)  A1/A2

26  20      47         20          0         65      49         53
    (15.0)  (70.0)     (30.0)     (0.0)      (30.0)  (45.0)     (49.0)
38  59      13         39         10         76      39         50
    (48.0)  (21.0)     (63.0)     (16.0)     (37.0)  (38.0)     (49.0)
46  53      26         29         12         62      57         42
    (40.0)  (39.0)     (43.0)     (18.0)     (28.0)  (52.0)     (39.0)
48  35      35         29          3         75      53         37
    (26.0)  (52.0)     (43.0)     (4.0)      (34.0)  (49.0)     (34.0)
89  54      22         36          9         50      63         40
    (40.0)  (33.0)     (54.0)     (13.0)     (23.0)  (58.0)     (37.0)

a   Allele and   [chi square]  DF  p
    A2/A2 (%)

26   6           10            2   0
    (6.0)          .9              .004
38  13            6            2   0
    (13.0)         .7              .04
46  10            7            2   0
    (9.0)          .3              .03
48  19            6            2   0
    (17.0)         .2              .04
89   5            8            2   0
    (5.0)          .3              .02

(a) Order (by chromosome and genomic position) in which the candidate
and ancestry informative markers are listed on the Supplementary
Tables; DF, degrees of freedom; [X.sup.2], value of chi-squared
statistic from chi-square test of independence; p, p-value.

Table 5--Cox proportional hazards multivariate model for predicting time
to immune response.

Variable                        Hazard     95%         95%
                                ratio      confidence  confidence
                                           interval.   interval.
                                           lower       upper
                                           limit       limit

Male sex                        1.2501     0.6477       2.4130
African genetic background (%)  1.2388     0.1348      11.3837
Age at ART start                1.0050     0.9627       1.0492
Start ART with less than 200    0.3928     0.2081       0.7413
CD4+ T cells/[micro]L
of blood

  rs2069762 A/A                 Reference
  rs2069762 A/C genotype        0.6767     0.3709       1.2349
  rs2069762 C/C genotype        8.5971     2.0590      35.8958

IL4 SNP                         Reference
  rs2243250 G/G genotype        0.5370     0.2290       1.2589
  rs2243250 A/G genotype        0.7983     0.4057       1.5709
  rs2243250 A/A genotype

  rs1128503 G/G genotype        Reference
  rs1128503 A/G genotype        0.4941     0.2060      1.1851
  rs1128503 A/A genotype        0.2933     0.1479      0.5816

  rs4646437 G/G genotype        Reference
  rs4646437 A/G genotype        1.9287     0.7274      5.1134
  rs4646437 A/A genotype        0.9919     0.5277      1.8646

  rs707265 G/G genotype         Reference
  rs707265 A/G genotype         0.3201     0.0660      1.5532
  rs707265 A/A genotype         0.7842     0.4252      1.4463
  Regimen containing AZT        0.8751     0.3714      2.0621
  as NRTI option
  Regimen containing            1.8951     1.0258      3.5010
  PI/r as third option
  Events of detectable          0.9953     0.9727      1.0183
  plasma viral load (pVL
  [greater than or equal to]50

Variable                        Adjusted

Male sex                        0.51
African genetic background (%)  0.85
Age at ART start                0.82
Start ART with less than 200    0.004
CD4+ T cells/[micro]L
of blood

  rs2069762 A/A
  rs2069762 A/C genotype        0.20
  rs2069762 C/C genotype        0.003

  rs2243250 G/G genotype        0.15
  rs2243250 A/G genotype        0.51
  rs2243250 A/A genotype

  rs1128503 G/G genotype
  rs1128503 A/G genotype        0.11
  rs1128503 A/A genotype        0.0004

  rs4646437 G/G genotype
  rs4646437 A/G genotype        0.19
  rs4646437 A/A genotype        0.98

  rs707265 G/G genotype
  rs707265 A/G genotype         0.16
  rs707265 A/A genotype         0.44
  Regimen containing AZT        0.76
  as NRTI option
  Regimen containing            0.04
  PI/r as third option
  Events of detectable          0.68
  plasma viral load (pVL
  [greater than or equal to]50

ART, antiretroviral therapy; SNP, single nucleotide polymorphism; NRTI,
nucleoside analog reverse transcriptase inhibitor; p, p-value; PI/r,
protease inhibitor boosted with ritonavir.
COPYRIGHT 2018 Contexto
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Original article
Author:Coelho, Antonio V.C.; de Moura, Ronald R.; Guimaraes, Rafael L.; Brandao, Lucas A.C.; Crovella, Serg
Publication:The Brazilian Journal of Infectious Diseases
Article Type:Report
Geographic Code:3BRAZ
Date:Sep 1, 2018
Previous Article:Mycobacterium tuberculosis complex bacteremia among HIV and non-HIV patients in a Mexican tertiary care center.
Next Article:Viral detection profile in children with severe acute respiratory infection.

Terms of use | Privacy policy | Copyright © 2022 Farlex, Inc. | Feedback | For webmasters |