Printer Friendly

Antimicrobial-Induced Cytopenia and Bone Marrow Hypocellularity in Patients with Cirrhosis.

1. Introduction

Patients of chronic liver disease (CLD) and end-stage cirrhosis have varying grades of cytopenia and other hematologic derangements either due to the compromised synthetic capacity of the diseased liver itself or resulting from the innumerable medical or surgical insults [1]. These patients experience complications related to uni- or multilineage peripheral cytopenias. It is known that patients with one or more cytopenias have prolonged hospitalization and reduced survival rates [2, 3]. However, the grades of cytopenias in patients with same severity of CLD and their causative factors are not clear. It is believed that such cytopenias are caused by hypersplenism but extent of cytopenias caused by hypersplenism is variable. It is possible that there may be interplay of numerous other factors that cause cytopenias in these patients.

Several recent studies have elucidated the role of gut microbial dysregulation attributed to antimicrobial therapy [4-7]. Infections are very common in advanced cirrhosis and antimicrobial prophylaxis is necessary in patients with cirrhosis who have gastrointestinal bleeding, as well as in invasive procedures such as transjugular intrahepatic portosystemic shunt [8, 9]. Hence a decreased gut microbial diversity is especially relevant in patients with CLD as majority of them are treated with antimicrobials. Most broad-spectrum antibiotics impact not only the harmful bacteria but also healthy ones. Apart from impairment of the healthy gut microbiota, antibiotics have a direct harmful effect on the intestinal epithelia and facilitate spread of antibiotic-resistant microorganisms too [10]. Owing to the close relationship between gut and liver via the "gut-liver" axis, gut microbiota plays a major role in the pathogenesis of many CLDs, as suggested by increasing evidence [11-14].

Recent studies have also highlighted the role of gut microbiota in regulation of hematopoiesis [4,15]. The gut microbial products such as lipopolysaccharides stimulate lymphocytes, macrophages, and dendritic cells in the lamina propria which, in turn, produce a series of extrinsic stimuli. All these microbial and cellular stimuli work together to sustain steady-state hematopoiesis and also induce emergency myelopoiesis [6, 16]. Treatment with broad-spectrum antibiotics can disrupt the balance and diversity of gut microbiota, leading to impaired hematopoiesis and a higher susceptibility to infections [7]. Hence, it is possible that cytopenias in patients with CLDs, in part, could be attributed to fecal dysbiosis induced by antimicrobial therapy.

There is a paucity of reports that specifically address antimicrobial-induced cytopenias in the CLD population. Therefore, we analyzed cases of cirrhosis on antimicrobials that developed uni--or multilineage cytopenias in our hospital over a 1-year period to examine the spectrum of the implicated agents. We also examined the bone marrow aspiration (BMA) and/or biopsy (BBx) findings to determine the histological diagnoses.

2. Patients and Methods

2.1. Patient Population. We studied all patients with cirrhosis with cytopenia (anemia, leucopenia, and/or thrombocytopenia), admitted in the Institute of Liver & Biliary Sciences, between January 2016 and July 2017, who underwent a bone marrow (BM) aspiration and/or biopsy procedure. Cirrhosis was diagnosed based on clinical, laboratory, and radiological evidence. The etiological categories of CLD included alcoholic and nonalcoholic fatty liver disease (NAFLD) and viral, cryptogenic, and vascular disorders of the liver. Exclusion criteria were patients with hematological/hepatic malignancy and cases with missing records.

2.2. Clinical and Laboratory Data. The clinical diagnosis and etiology of CLD was noted from the patient case record forms. Venous blood samples were routinely collected from all patients to assess complete blood counts, prothrombin time/international normalized ratio (PT/INR), liver function tests, and serum urea and creatinine levels. The hematological counts were assayed using EDTA-anticoagulated blood on LH750 (Beckman Coulter Inc., Brea, California, USA) and Horiba ABX Pentra DX 120 (Horiba Medical, Montpellier, France). Citrated blood sample (with sodium citrate as anticoagulant in a ratio of 9:1) was used for studying the coagulation tests performed on fully automated coagulometer (Sysmex CA1500; Sysmex Corporation, Kobe, Japan). The biochemical tests were performed on DXC 600 Pro (Beckman Coulter Inc., Brea, California). Serum procalcitonin levels were measured using the Maglumi 1000 Analyzer chemiluminescence immunoassay system (SNIBE Co Ltd, Guangdong, China). Serum ferritin and C-reactive protein (CRP) levels were analyzed by nephelometry (Dade Behring BN ProSpec; Siemens Healthcare Diagnostics, Marburg, Germany). TNFa levels were determined using the automated Immulite CLIA system (Siemens, Germany).

The effect of the different antimicrobial agents on peripheral blood counts in patients with CLD was explored. Cytopenias were defined as follows: hemoglobin (Hb) < 9 g/dL, total leucocyte count (TLC) < 4,000/[micro]L, and platelet count (Plt) < 100,000/[micro]L [17]. Details regarding number and duration of antimicrobials given to each patient were recorded. Model for End-Stage Liver Disease (MELD) scores was used to assess the severity of the CLD. The ultimate outcome of each patient, whether discharged/expired/left against medical advice (LAMA), was also noted.

2.3. Statistical Analyses. Data in Excel (Microsoft, Redmond, WA, USA) sheet were imported into and analyzed using STATA (version 12.1 STATA Corp., College Station, TX, USA). To begin baseline characteristics were summarized using frequency, proportion, mean (SD), and median (IQR). The difference of distribution (unadjusted analysis) between numeric variables among groups was analyzed using the / -test or one-way analysis of variance (ANOVA). Mann-Whitney's or Kruskal-Wallis test was used for nonparametric data. Logistic regression was used to estimate the ORs and 95% CIs for the association between exposure to the medication classes and cytopenias.

3. Results

3.1. Patient Characteristics. A total of 196 patients' data was analyzed for this study. Table 1 displays the general characteristics of the patients with regard to age, gender, clinical diagnosis, antimicrobials given, MELD scores, and outcome (death/discharge/LAMA). The mean age of these patients was 46 [+ or -] 15 years, with 157 (80%) males. The etiologies included ethanol (31.6%), nonalcoholic steatohepatitis (NASH) (25.4%), cryptogenic (23%) and hepatotropic viruses (4.6%), vascular pathology (10.2%), and others (5%). Of the total 196 patients, 115 were given antimicrobials as part of their treatment whereas the remaining 81 received none. As evident from Table 1, there is no statistically significant difference in the MELD scores and mean spleen size between the two groups of patients, making them comparable as per severity of liver disease and presence of hypersplenism.

3.2. Use of Antimicrobial Agents. The antibiotics most commonly used were 3rd-generation cephalosporins (cefotaxime, ceftriaxone, cefixime, and ceftazidime), carbapenems (meropenem, doripenem, ertapenem, and imipenem), beta-lactams (piperacillin/tazobactam, sulbactam, and co-amoxiclav), quinolones (ciprofloxacin, norfloxacin, and levofloxacin), and antifungals (fluconazole). The median length of an antibiotic course was 7 days (IQR 5-9).

3.3. Range of Cytopenias. As evident from Table 1, there was significant difference in the hemoglobin (p < 0.001), total leucocyte count (p = 0.048), and platelet count (p = 0.043) between the two groups of patients. Table 2 depicts the range of cytopenias and outcomes in different categories of antimicrobials in patients with CLD. Among patients who were given antimicrobials (n = 115), only 28 (24.3%) patients had a normal blood cell count. The remaining 87 had peripheral cytopenias, in which unilineage cytopenias accounted for 21.7% (25/115), bilineage cytopenias accounted for 28.7% (33/115), and trilineage cytopenias accounted for 21.7% (25/115). As shown in Table 1, patients on antimicrobial therapy had significantly lower values of hemoglobin (p < 0.001), total leucocyte count (p = 0.048), and platelet count (p = 0.043) when compared to those not on any antimicrobials. In the unadjusted analysis, drug classes with a statistically significant association with thrombocytopenia were beta-lactams (OR = 1.56, 95% CI = 1.06-2.40), quinolones (OR = 1.66, 95% CI = 1.11-2.61), and antifungals (OR = 2.24, 95% CI = 1.96-4.34). Further, cephalosporins were found to be significantly associated with anemia (OR = 1.91, 95% CI = 1.07-3.41). We found no statistically significant association between any particular antimicrobial agents and leucopenia.

After adjusting for MELD score, spleen size, and procalcitonin, beta-lactam antibiotics (OR = 1.62,95% CI = 1.64-2.96) and quinolones (OR = 1.53,95% CI = 1.47-2.51) were the only drug classes with a statistically significant association with thrombocytopenia (Table 3). Antifungals were no longer statistically associated with thrombocytopenia after adjustment (OR = 1.64, 95% CI = 0.86-4.36). Likewise, cephalosporins too lacked significant association with anemia (OR = 1.62, 95% CI = 0.97-3.41).

We found no statistically significant association between carbapenems and other antimicrobials and cytopenias.

3.4. Bone Marrow Findings. Clinical indications for BMA/ BBx were to investigate cytopenias and to rule out infections/hematological neoplasms/hemophagocytic lymphohistiocytosis (HLH). In both the groups, majority of patients had a reactive marrow and twenty-five (21.7%) patients who received antimicrobials had hypocellular marrow. In contrast none of the patients in the nonantimicrobial group had marrow hypocellularity (Table 1). In patients with hypocellular marrow (n = 25) there was no significant difference among the five classes of antimicrobials studied (cephalosporins p = 0.776, carbapenems p = 0.063, beta-lactams p = 0.677, quinolones p = 0.770, and antifungals p = 0.469).

There was no significant difference between the two groups with regard to marrow histology (myeloid: erythroid ratio, marrow fibrosis, neovascularization, CD34 percentage, etc.)

3.5. Outcome. Of the 196 patients, 169 (86.2%) survived and were discharged, 13 (6.6%) died, and the remaining 14 (7.1%) patients left against medical advice. There was no statistically significant difference in the outcomes of the patients in the two groups [Table 1].

4. Discussion

To our knowledge, this is the first study to evaluate the risk of cytopenias associated with the use of commonly prescribed antimicrobial agents in the specific cohort of patients with CLD. The adjusted analysis showed that quinolones and beta-lactam antibiotics were the only drug classes with a statistically significant association with thrombocytopenia. Further, we found no association between cephalosporins, carbapenems, antifungals, and peripheral blood cytopenias.

Our findings are in line with previous studies (observing a generalized population of sick patients) which have highlighted cases of thrombocytopenia associated with the use of quinolones [18-20]. It has been postulated that the mechanism of this association is due to drug-dependent, platelet-reactive antibodies causing complement-mediated destruction of platelets [20]. Further, recent reviews have suggested that this immune thrombocytopenia of quinolones may be explained by the structural relationship between quinolones and quinine, which is well known to induce platelet-reactive antibodies [21]. Researchers have also shown evidence for an increased risk of thrombocytopenia with use of beta-lactam antibiotic agents [22-24]. In these cases, too, the underlying mechanism was thought to be covalent binding of drug-dependent antibodies to platelet membrane resulting in platelet destruction. We found no association between other agents such as cephalosporins, carbapenems, and antifungals and cytopenias in our patients.

The strengths of our study include the patient population selected for the analysis and the robust multivariate analysis implemented for adjusting for the various confounding factors. However, our study had a few limitations. For instance, we could not evaluate the potential effect of different drug combinations on cytopenias. The analysis of the various antimicrobial agents as groups could have masked effects of individual drugs. Also, we analyzed only the most commonly used medications in our study population and not every antimicrobial agent that has been known to be associated with cytopenias.

In patients with CLD, cytopenias were considered to be caused mostly due to hypersplenism [25]. But this hypothesis has never been proven beyond any doubt. It is known that anemia due to excessive splenic pooling or phagocytosis is rare [26]. Also, neutropenia does not always resolve after splenic embolization or splenectomy [27]. With regard to thrombocytopenia, studies have failed to demonstrate any direct correlation between platelet count and spleen size [28]. In recent years, several other factors have also been known to contribute to the decreased blood counts in these patients, namely, toxic effects of hepatic virus/alcohol [29, 30], hypofunctioning of the diseased liver [31, 32], and gastrointestinal bleeding [26]. An interesting revelation in cirrhosis in recent years is the occurrence of fecal dysbiosis in patients with cirrhosis. Most of the precirrhotic liver diseases and cirrhosis are associated with intestinal bacterial overgrowth and also increased gut wall permeability. This has been described as the leaky gut hypothesis. Changes in the gut microbiota also lead to the enhanced release of pro-inflammatory cytokines which further enhance translocation and in turn links to development of many complications of CLD, as well as progression of disease. As is already well known, antimicrobials, especially those with broad-spectrum action, impact not only harmful bacteria, but also healthy ones [7]. This is of particular relevance in patients with CLD; antibiotics are considered a cornerstone in the management of CLD and its various complications. It is interesting to note here the role of microbial metabolites on hematopoiesis. Josefsdottir et al. have shown that commensal gut microbes regulate and sustain normal steady-state hematopoiesis [33]. They further demonstrate that broad-spectrum antibiotic treatment of mice for >2 weeks depletes the gut microbial flora, which ultimately leads to a decrease in the numbers of hematopoietic progenitors in the bone marrow and concomitant cytopenias. This is attributed not to the toxic effect of antibiotics on hematopoietic cells but rather to depletion of gut microbiota by antibiotic treatment. Along the same lines, it is possible that cytopenias in patients with CLDs, in part, could be attributed to fecal dysbiosis. Further experimental studies are warranted to investigate this hypothesis and whether fecal microbiota transplantation may prove beneficial to improving cytopenias in CLD patients.

https://doi.org/10.1155/2018/4029648

Disclosure

Anupama Patil and Vikas Khillan are co-first authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] P. Gupte and A. Nagral, "Hematological problems and liver disease," Trop Gastroenterol, vol. 30, no. 2, pp. 65-70, 2009.

[2] F. Thiolliere, A. F. Serre-Sapin, J. Reignier et al., "Epidemiology and outcome of thrombocytopenic patients in the intensive care unit: Results of a prospective multicenter study," Intensive Care Medicine, vol. 39, no. 8, pp. 1460-1468, 2013.

[3] D. M. Vandijck, S. I. Blot, J. J. De Waele, E. A. Hoste, K. H. Vandewoude, and J. M. Decruyenaere, "Thrombocytopenia and outcome in critically ill patients with bloodstream infection," Heart & Lung: The Journal of Acute and Critical Care, vol. 39, no. 1, pp. 21-26, 2010.

[4] A. Khosravi, A. Yanez, J. G. Price et al., "Gut microbiota promote hematopoiesis to control bacterial infection," Cell Host & Microbe, vol. 15, no. 3, pp. 374-381, 2014.

[5] J. M. Lankelma, D. R. Cranendonk, C. Belzer et al., "Antibiotic-induced gut microbiota disruption duringhuman endotoxemia: A randomised controlled study," Gut, vol. 66, no. 9, pp. 1623-1630, 2017.

[6] M. L. Balmer, C. M. Schurch, Y. Saito et al., "Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/ TICAM signaling," The Journal of Immunology, vol. 193, no. 10, pp. 5273-5283, 2014.

[7] G. Ianiro, H. Tilg, and A. Gasbarrini, "Antibiotics as deep modulators of gut microbiota: Between good and evil," Gut, vol. 65, no. 11, pp. 1906-1915, 2016.

[8] J. Anastasiou and R. Williams, "When to use antibiotics in the cirrhotic patient? The evidence base," Ann Gastroenterol Q Publ Hell Soc Gastroenterol, vol. 26, no. 2, pp. 128-131, 2013.

[9] G. Garcia-Tsao, A. J. Sanyal, N. D. Grace et al., "Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis," Hepatology, vol. 46, no. 3, pp. 922-938, 2007.

[10] A. Morgun, A. Dzutsev, X. Dong et al., "Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks," Gut, vol. 64, no. 11, pp. 1732-1743, 2015.

[11] L. Zhu, R. D. Baker, R. Zhu, and S. S. Baker, "Gut microbiota produce alcohol and contribute to NAFLD," Gut, vol. 65, no. 7, p. 1232, 2016.

[12] E. A. Mutlu, P. M. Gillevet, H. Rangwala et al., "Colonic microbiome is altered in alcoholism," American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 302, no. 9, pp. G966-G978, 2012.

[13] Y. Chen, F. Yang, H. Lu et al., "Characterization of fecal microbial communities in patients with liver cirrhosis," Hepatology, vol. 54, no. 2, pp. 562-572, 2011.

[14] D. L. Shawcross, S. S. Shabbir, N. J. Taylor, and R. D. Hughes, "Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis," Hepatology, vol. 51, no. 3, pp. 1062-1069, 2010.

[15] K. Theilgaard-Monch, "Gut microbiota sustains hematopoiesis," Blood, vol. 129, no. 6, pp. 662-663, 2017.

[16] S. Salva and S. Alvarez, "The role of microbiota and immunobiotics in granulopoiesis of immunocompromised hosts," Frontiers in Immunology, vol. 8, no. MAY, article no. 507, 2017.

[17] B. Gayathri and K. Rao, "Pancytopenia: A clinico hematological study," Journal of Laboratory Physicians, vol. 3, no. 1, p. 15, 2011.

[18] R. Salloum, C. Y. Liu, and A. M. Weise, "Possible case of levofloxacin-induced thrombocytopenia," American Journal of Health-System Pharmacy, vol. 68, no. 1, pp. 43-46, 2011.

[19] C. Polprasert and K. Prayongratana, "Levofloxacin-induced severe thrombocytopenia," J Med Assoc Thai, vol. 92,3, pp. S69-S71, 2009.

[20] C. Y. Cheah, B. De Keulenaer, and M. F. Leahy, "Fluoroquinolone-induced immune thrombocytopenia: a report and review," Internal Medicine Journal, vol. 39, no. 9, pp. 619-623, 2009.

[21] J. L. Priziola, M. A. Smythe, and W. E. Dager, "Drug-induced thrombocytopenia in critically ill patients," Critical Care Medicine, vol. 38, no. 6, pp. S145-S154, 2010.

[22] A. Anand and H. K. C. Chauhan, "Piperacillin and vancomycin induced severe thrombocytopenia in a hospitalized patient," Platelets, vol. 22, no. 4, pp. 294-301, 2011.

[23] H. Mansour, A. Saad, M. Azar, and P. Khoueiry, "Case report: Amoxicillin/clavulanic acid-induced thrombocytopenia," Hospital Pharmacy Journal, vol. 49, no. 10, pp. 956-960, 2014.

[24] M. J. Ten Berg, A. Huisman, P. C. Souverein et al., "Drug-induced thrombocytopenia: A population study," Drug Safety, vol. 29, no. 8, pp. 713-721, 2006.

[25] F. N. Bashour, J. C. Teran, and K. D. Mullen, "Prevalence of peripheral blood cytopenias (hypersplenism) in patients with nonalcoholic chronic liver disease," American Journal of Gastroenterology, vol. 95, no. 10, pp. 2936-2939, 2000.

[26] P. I. Johansson and J. Stensballe, "Hemostatic resuscitation for massive bleeding: The paradigm of plasma and platelets--A review of the current literature," Transfusion, vol. 50, no. 3, pp. 701-710, 2010.

[27] T. Ohashi and K. Fujiwara, "Hematologic abnormalities in liver disease," [Zasshi] Journal. Nihon Naika Gakkai, vol. 71, no. 12, pp. 1677-1681, 1982.

[28] S. H. A. Shah, P. C. Hayes, P. L. Allan, J. Nicoll, and N. D. Finlayson, "Measurement of spleen size and its relation to hypersplenism and portal hemodynamics in portal hypertension due to hepatic cirrhosis," American Journal of Gastroenterology, vol. 91, no. 12, pp. 2580-2583, 1996.

[29] J. Djordjevic, P. Svorcan, D. Vrinic, and B. Dapcevic, "Splenomegaly and thrombocytopenia in patients with liver cirrhosis," Vojnosanitetski Pregled, vol. 67, no. 2, pp. 166-169, 2010.

[30] L. S. Friedman, "The risk of surgery in patients with liver disease," Hepatology, vol. 29, no. 6, pp. 1617-1623, 1999.

[31] E.-M. Wolber, R. Ganschow, M. Burdelski, and W. Jelkmann, "Hepatic thrombopoietin mRNA levels in acute and chronic liver failure of childhood," Hepatology, vol. 29, no. 6, pp. 1739-1742, 1999.

[32] M. Koruk, M. D. Onuk, F. Akjay, and M. C. Savas, "Serum thrombopoietin levels in patients with chronic hepatitis and liver cirrhosis, and its relationship with circulating thrombocyte counts," Hepato-Gastroenterology, vol. 49, no. 48, pp. 1645-1648, 2002.

[33] K. S. Josefsdottir, M. T. Baldridge, C. S. Kadmon, and K. Y. King, "Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota," Blood, vol. 129, no. 6, pp. 729-739, 2017.

Anupama Patil, (1) Vikas Khillan, (2) Monika Thakur, (1) Pratibha Kale, (2) Chhagan Bihari (ID) (1)

(1) Department of Clinical Hematology, Institute of Liver & Biliary Sciences, New Delhi, India

(2) Department of Microbiology, Institute of Liver & Biliary Sciences, New Delhi, India

Correspondence should be addressed to Chhagan Bihari; drcbsharma@gmail.com

Received 11 January 2018; Revised 29 March 2018; Accepted 5 April 2018; Published 14 May 2018

Academic Editor: Luis F. Porrata
Table 1: Baseline characteristics of patients with CLD on
antimicrobials compared with those not on antimicrobials (Total n =
196).

Parameter                       Total (n = 196)     Patients with
                                                    CLD on
                                                    antimicrobials
                                                    (n = 115)

Age, years (mean [+ or -] SD)   46 [+ or -] 15      44 [+ or -] 18
Gender: male, n (%)             157 (80%)           91 (79.1%)
Etiology of CLD: n (%)
  (i) Ethanol                   62 (31.6%)          34 (29.6%)
  (ii) NASH                     42 (21.4%)          22 (19.1%)
  (iii) Viral                   9 (4.6%)            4 (3.5%)
  (iv) Cryptogenic              41 (20.9%)          30 (26.1%)
  (v) AIH                       5 (2.6%)            4 (3.5%)
  (vi) Vascular                 20 (10.2%)          8 (7.0%)
  (vii) NCPF                    7 (3.6%)            5 (4.3%)
  (viii) Others                 10 (5%)             8 (7%)
Hb (g/dL)                       9.5 (7.6-11.3)      8.8 (7.2-10.4)
TLC (x[10.sup.9]/L)             5.0 (3.2-8.7)       2.8 (2.5-5.6)
Plt count (x[10.sup.9]/L)       86 (49-154)         86 (43-135)
MELD score                      11 (7.0-17.3)       13 (6.5-20.7)
Spleen size                     15.7 [+ or -] 4.3   15.3 [+ or -] 4.0
Procalcitonin                   1.5 (0.3-1.2)       2.5 (1.3-2.7)
C-reactive protein              20.8 (7.9-37.1)     17.6 (7.5-29.3)
Ferritin                        179 (76-592)        336 (79-691)
TNF-a (n = 16)                  18.4 (17.3-29.4)    19.6 (17.5-32.9)
Antimicrobials used: n (%)
  (i) Cephalosporin             86 (44%)            86 (74.7%)
  (ii) Carbapenem               40 (20.4%)          40 (34.8%)
  (iii) Beta lactams            25 (12.8%)          25 (21.7%)
  (iv) Quinolones               13 (6.6%)           13 (11.3%)
  (v) Antifungals               19 (9.7%)           19 (16.5%)
Bone marrow impression: n (%)
  (i) Reactive                  168 (85.7%)         89 (77.4%)
  (ii) Hypocellular             25 (12.8%)          25 (21.7%)
  (iii) Inadequate (diluted     3 (1.5%)            1 (8.7%)
  marrow)
Outcome: n (%)
  (i) Discharged                169 (86.2%)         99 (86.1%)
  (ii) Dead                     13 (6.6%)           15 (13.9%)
  (iii) LAMA                    14 (7.1%)           1 (8.7%)

Parameter                       Patients with       p value
                                CLD without
                                antimicrobial
                                therapy
                                (n = 81)

Age, years (mean [+ or -] SD)   49 [+ or -] 11      0.105
Gender: male, n (%)             66 (81.5%)          0.687
Etiology of CLD: n (%)
  (i) Ethanol                   28 (34.6%)
  (ii) NASH                     20 (24.7%)
  (iii) Viral                   5 (6.2%)
  (iv) Cryptogenic              11 (3.6%)           0.235
  (v) AIH                       1 (1.2%)
  (vi) Vascular                 12 (14.8%)
  (vii) NCPF                    2 (2.5%)
  (viii) Others                 2 (2.5%)
Hb (g/dL)                       10.5 (8.6-12.1)     <0.001
TLC (x[10.sup.9]/L)             5.0 (3.1-9.1)       0.048
Plt count (x[10.sup.9]/L)       90 (54-165)         0.043
MELD score                      12 (8.0-13.7)       0.201
Spleen size                     16.4 [+ or -] 4.5   0.075
Procalcitonin                   0.5 (0.3-0.5)       0.011
C-reactive protein              4.3 (3.9-10.9)      0.035
Ferritin                        245 (70-544)        0.401
TNF-a (n = 16)                  10.2 (8.2-29.4)     0.143
Antimicrobials used: n (%)
  (i) Cephalosporin
  (ii) Carbapenem
  (iii) Beta lactams            --                  --
  (iv) Quinolones
  (v) Antifungals
Bone marrow impression: n (%)
  (i) Reactive                  79 (97.5%)
  (ii) Hypocellular             0                   <0.001
  (iii) Inadequate (diluted     2 (2.5%)
  marrow)
Outcome: n (%)
  (i) Discharged                70 (86.4%)          0.081
  (ii) Dead                     2 (2.5%)            0.093
  (iii) LAMA                    13 (16%)

Table 2: The range of cytopenias and outcomes in different categories
of antimicrobials in patients with CLD (Total n = 196).

Item                      No           Cephalosporin     Carbapenem
                      antimicrobials     (n = 86)         (n = 40)
                         (n = 81)

Hb (g/dL)             10.5 (8.6-12)    8.8 (7.2-10)      9 (6.7-10.8)
TLC (x[10.sup.9]/L)   5.0 (3.5-7.6)    4.9 (3.1-8.7)     6.6 (3.3-12)
Plt count             90 (54-165)      84.5 (40-154)     90 (51-150)
(x[10.sup.9]/L)
MELD score            12 (8.0-13.7)    11.5 (5.5-19.4)   18.5 (11-28.6)
Outcome, alive:       70 (86.4%)       75 (87.2%)        21 (52.5%)
n (%)

Item                  Beta-lactams     Quinolones      Antifungals
                        (n = 25)        (n = 13)        (n = 19)

Hb (g/dL)             8.8 (7.6-9.9)   8.6 (6.5-10)    8 (6.7-10.8)
TLC (x[10.sup.9]/L)   5.1 (2.5-11)    8.7 (2.4-14)    4.4 (3.1-12)
Plt count             65 (41-110)     64 (23-104)     90 (50-176)
(x[10.sup.9]/L)
MELD score            15.4 (7.6-21)   15.6 (7.4-32)   12.7 (5-31.4)
Outcome, alive:       19 (76%)        9 (69.2%)       10 (53%)
n (%)

Table 3: Cytopenias among those who received antimicrobials and those
who did not (Total n = 196).

Antimicrobial    Parameter           Those who   Those who
agent                                received    did not
                                                 receive

Cephalosporins   Anemia              53.5%       38.2%
(n = 86)         Leucopenia          36%         33.6%
                 Thromb ocytopenia   58.1%       58.2%
Carbapenems      Anemia              50%         43.6%
(n = 40)         Leucopenia          27.5%       36.5%
                 Thromb ocytopenia   57.5%       58.3%
Beta-lactams     Anemia              56%         43.3%
(n = 25)         Leucopenia          40%         33.9%
                 Thrombocytopenia    68%         36.7%
Quinolones       Anemia              53.8%       44.3%
(n = 13)         Leucopenia          30.8%       35%
                 Thrombocytopenia    76.9%       46.8%
Antifungals      Anemia              57.9%       43.5%
(n = 19)         Leucopenia          31.6%       35%
                 Thrombocytopenia    57.9%       58.2%

Antimicrobial    Parameter           OR (95% CI)           p value
agent

Cephalosporins   Anemia              1.91 (0.073-3.409)    0.128
(n = 86)         Leucopenia          1.08 (0.597-1.957)    0.796
                 Thromb ocytopenia   1.00 (0.565-1.775)    0.995
Carbapenems      Anemia              1.294 (0.645-2.595)   0.468
(n = 40)         Leucopenia          0.659 (0.306-1.418)   0.286
                 Thromb ocytopenia   0.966 (0.478-1.952)   0.924
Beta-lactams     Anemia              1.667 (0.716-3.886)   0.236
(n = 25)         Leucopenia          1.299 (0.549-3.071)   0.551
                 Thrombocytopenia    1.621 (1.464-2.960)   0.041
Quinolones       Anemia              1.469 (0.475-4.542)   0.504
(n = 13)         Leucopenia          0.826 (0.245-2.789)   0.759
                 Thrombocytopenia    1.532 (1.474-2.507)   0.039
Antifungals      Anemia              1.786 (0.685-4.654)   0.236
(n = 19)         Leucopenia          0.856 (0.310-2.363)   0.764
                 Thrombocytopenia    0.988 (0.379-2.576)   0.980
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Research Article
Author:Patil, Anupama; Khillan, Vikas; Thakur, Monika; Kale, Pratibha; Bihari, Chhagan
Publication:Bone Marrow Research
Article Type:Report
Geographic Code:9INDI
Date:Jan 1, 2018
Words:4260
Previous Article:Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive...
Next Article:BET Inhibition Suppresses S100A8 and S100A9 Expression in Acute Myeloid Leukemia Cells and Synergises with Daunorubicin in Causing Cell Death.
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |