Printer Friendly

Advances in the Preclinical Study of Some Flavonoids as Potential Antidepressant Agents.

1. Introduction

Depression is one of the most frequently diagnosed psychiatric disorders in the general population, the symptoms of which negatively impact health and are associated with high financial costs [1]. According to the World Health Organization, depression will become the primary cause of disability by 2030 [2].

A wide variety of antidepressant drugs are available to treat the symptoms of depression. Such antidepressants produce their therapeutic effects through actions on diverse neurotransmitter systems, including the serotonergic, noradrenergic, and dopaminergic systems [3]. The principal antidepressant drugs are tricyclic antidepressants (e.g., clomipramine and imipramine), monoamine oxidase inhibitors (e.g., phenelzine and selegiline), selective serotonin reuptake inhibitors (e.g., fluoxetine and fluvoxamine), selective dopamine reuptake inhibitors (e.g., amineptine and methylphenidate), selective norepinephrine reuptake inhibitors (e.g., reboxetine and viloxazine), and dual antidepressant drugs (e.g., venlafaxine and duloxetine) [4, 5].

Most antidepressant drugs have a delayed onset of therapeutic actions and many have side effects when taken in the long term. This has led patients to search for alternatives, based on the use of plants with reputed antidepressant activity [6]. An increasing number of studies have investigated natural chemical compounds with potential antidepressant activity [7], including bioactive metabolites, such as flavonoids, that exert multiple effects on the central nervous system [8].

Substantial preclinical evidence indicates that some flavonoids reduce behavioral endophenotypes of depression in animal models by increasing the concentrations of different neurotransmitters and expression of neurotrophic factors in the brain [9,10]. The present review focuses on the results of preclinical research that indicate the potential antidepressant effects of some flavonoids and describes the mechanisms of action that are involved in these effects. We propose future scientific research in the area of pharmacotherapy to develop safe and effective antidepressant drugs based on natural products to ameliorate the symptoms of depression in humans.

2. Background on Flavonoids

Flavonoids are phenolic compounds that are widely distributed in vascular plants. Many chemical compounds, both in their free form and in the form of glycosides, have been evaluated to determine their biological activity [11]. More than 5000 types of flavonoids have been identified, which are structurally different and possess a wide range of biological activities. Flavonoids are chemical compounds with a low molecular weight whose base structure (Figure 1) comprises a system of rings of diphenyl pyrene or phenyl benzopyrene accompanied by two variable groups of hydroxyl phenolic radicals [12].

According to the chemical structure of flavonoids (Figure 2), they can be classified as flavonoids, flavones, flavanones, isoflavones, and anthocyanidins [62]. Studies in mammals and in vitro have shown that flavonoids exert antioxidant, antiallergic, hepatoprotective, antiviral, anticarcinogenic, neuroprotective, antitoxic, anxiolytic, antiepileptic, estrogenic, and antidepressant-like effects by inhibiting some enzymes [63-66], which is dependent on the dose and type of flavonoid administered.

3. Flavonoid Metabolism

The daily dietary intake of flavonoids in humans is approximately 1-2 g per day, principally depending on individual alimentary habits [67]. Most flavonoids are found in plants in the [beta]-glycoside form. After intake, the processes of hydrolysis occur, but since the union-[beta] in these sugars is resistant to the hydrolysis produced by pancreatic enzymes, this metabolic process occurs in the intestinal lumen through actions of the lactase phlorizin hydrolase that is located in the membrane of enterocytes. When phlorizin hydrolase hydrolyzes flavonoids, they become capable of crossing intestinal membranes through passive diffusion. Another enzyme that facilitates the hydrolysis of flavonoids is cytosolic [beta]-glycosidase, which hydrolyzes a high number of glycosides [68, 69]. Cytosolic [beta]-glycosidase is located intracellularly in erythrocytes; therefore, active transport is required to cross cellular membranes. It is produced by sodium-glucose transport protein, which depends on sodium (SGLT-1) [69].

Hydrolyzed flavonoids (aglycones) are conjugated through methylation, sulphatation, and glucuronidation. Because of their high conjugation, hydrolyzed flavonoids are detected in low concentrations in plasma [70]. For example, hesperetin aglycone (the active form of the flavonoid hesperidin) is metabolized by the cytochrome isoforms P450 CYP1A and CYP1B1. This first-pass metabolism principally occurs through intestinal cells [71]. The metabolites of hesperidin/hesperetin are eliminated by renal route. Their metabolites are found in urine but not feces, suggesting that the high bacterial degradation of phenolic acids occurs at the level of the colon, allowing passage to the systemic circulation [71]. Particularly, the elimination of the flavonoid chrysin depends on the outflow, in which conjugated structures are hydrolyzed through sulphatases and glucuronidases in the intestine, suggesting that chrysin has low intestinal absorption, in which it is detected in high concentrations in feces [72].

Some studies have shown that hydrolyzed flavonoids and their conjugated derivatives may cross the hematoencephalic barrier and exert actions on the central nervous system [73]. This may at least partially explain their multiple pharmacological actions at the neuronal level that affect cognition and emotional and affective states. Numerous preclinical studies have shown that some flavonoids reduce depressive-like behavior, and these effects are related to the activation of neurotransmitter systems and trophic factors in the brain.

4. Antidepressant-Like Effects of Flavonoids in Plant Extracts

The treatment of depressive disorders is principally based on the use of synthetic antidepressant drugs (e.g., tricyclic antidepressants, selective serotonin reuptake inhibitors, and dual-action antidepressants) that are clinically effective but produce side effects. A principal limiting factor in the use of antidepressant drugs is their delayed onset of therapeutic antidepressant effects. Generally, therapeutic effects in humans occur after 2-3 weeks of treatment through neuronal plastic changes and the modification of neurotransmitter receptors. This process requires a relatively long time to produce antidepressant effects [74, 75]. In the first weeks of antidepressant treatment, patients may experience a worse mood state compared with their state before the initiation of pharmacological treatment [76]. Patients have sought therapeutic alternatives to ameliorate symptoms of depression. Infusions or standardized extracts of plants have been used for the alternative treatment of depression [77]. However, in most cases, these alternative therapies have not been investigated in systematic studies to support or refute their purported medicinal properties. Such a dearth of studies can pose a health risk to patients. Preclinical studies have evaluated the effects of plant extracts that contain a high percentage of total flavonoids (Table 1) that produce antidepressant-like effects in animal models of depression through actions on neurotransmitter receptors and production of neurotrophic factors in the brain [40].

Behavioral models (e.g., tail suspension test, forced swim test, and chronic unpredictable mild stress [CUMS] paradigm) allow identification of the potential antidepressant effects of diverse natural substances as flavonoids [78, 79], among others. Naringenin (10, 20, and 50 mg/kg), an isoflavone isolated from citrus peel, reduced total immobility time in the tail suspension test in male mice, similar to the effects of 20 mg/kg fluoxetine, a clinically effective antidepressant drug. These effects were interpreted as potential antidepressant-like effects [52]. Interestingly, this effect was blocked by pretreatment with p-chlorophenylalanine methyl ester (100 mg/kg) and [alpha]-methyl-p-tyrosine (100 mg/kg), inhibitors of the synthesis of serotonin and norepinephrine, respectively [52]. This suggests that the mechanism of action of naringenin involves the activation of serotonergic and noradrenergic neurotransmitter systems in the brain. Additionally, 10 and 20 mg/kg naringenin increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus after 21 days of treatment in mice that were subjected to CUMS [28], which was associated with an antidepressant-like effect. These results indicate that the antidepressant-like effect of naringenin may be mediated by the activation of both neurotransmitter systems and neurotrophic factors. Such mechanisms of action have also been identified for other clinically effective antidepressant drugs, such as fluoxetine [80].

Park et al. (2006) [81] found that a standardized extract of Cirsium japonicum Fisch. ex DC (Asteraceae) produced antidepressant-like effects in male mice. This effect was replicated in subsequent studies that evaluated the antidepressant-like effect of an ethanolic extract of this plant at doses of 50, 100, 200, and 400 mg/kg and its principal chemical constituents (i.e., linarin, pectolinarin, chlorogenic acid, and luteolin) at doses of 10 mg/kg in the forced swim and open field tests [30]. The authors showed that the antidepressant-like effects of this plant extract were produced by the flavonoid luteolin through actions on the [GABA.sub.A] receptor. Such [GABA.sub.A] receptor activation has also been involved in the antidepressant-like activity of other plant metabolites [82,83] and some neurosteroids such as allopregnanolone [84-86].

In male Sprague-Dawley rats, CUMS and an acute injection of corticosterone were used to produce depression-like behavior. The antidepressant-like effects of the flavonoid icariin (60 mg/kg), isolated from Epimedium brevicornum Maxim (Berberidaceae) on depression-like behavior produced by CUMS or corticosterone injection, were evaluated in the forced swim test. Corticosterone and CUMS increased total immobility time, reflecting despair-like behavior, and reduced BDNF concentrations in the hippocampus. These effects were prevented by the administration of icariin flavonoid, which was associated with the antidepressant-like effect [32].

A preclinical study of the methanolic extract of Byrsonima crassifolia (L.) Kunth (Malpighiaceae) at a dose of 500 mg/kg reported an antidepressant-like effect that was similar to the clinically effective antidepressant imipramine in albino ICR mice in the forced swim test. The authors indicated that this antidepressant-like effect was attributable to flavonoids in the extract [21], corresponding to quercetin (1.4 mg/kg), rutin (4.4 mg/kg), and hesperidin (0.7 mg/kg), which produce antidepressant-like effects when they are individually injected [9, 54, 87, 88]. Additionally, it has been reported that the administration for 7 days of flavonoid quercetin (10, 50, and 200 mg/kg, p.o.) decreases the 5-hydroxyindole acetaldehyde production modulating the serotonergic system by attenuating mitochondrial MAO-A activity in the brain [89], which is involved in the therapeutic effect of some antidepressant drugs.

Oral administration of 25, 50, and 100 mg/kg of a standardized aqueous extract, referred to as Xiaobuxin-Tang, which contains four different natural products (i.e., Haematitum, Flos Inulae, Folium Phyllostachydis Henonis, and Semen Sojae Preparatum), reduced immobility time in both the forced swim and the tail suspension tests in lipopolysaccharide-treated ICR mice, thus demonstrating an antidepressant-like effect. Xiaobuxin-Tang also reduced the levels of proinflammatory cytokines in the brain [90], apparently by its high content of flavonoids. A reduction of immobility time in the forced swim test was also produced by acute or chronic administration of 30,100, and 300 mg/kg of aqueous [91] or ethanolic [92] extracts of Melissa officinalis L. (Lamiaceae). This same effect was produced by its active metabolite rosmarinic acid (36 mg/kg) in male Sprague-Dawley rats [91], and the authors suggested that the antidepressant-like effect of this extract could be associated with its high content of rosmarinic acid, which is able to modulate the serotonergic system [91]. However, it is not possible to discard the participation of other chemical constituents of the M. officinalis extracts in their antidepressant-like effects, considering the high content in essential oils and flavonoids such as quercitrin, apigenin, and luteolin derivatives that may inhibit monoamine oxidases A (MAO-A) activity and interact with the [GABA.sub.A] receptors [93], which also occurs with the majority of the conventional antidepressant drugs [94].

Glycyrrhiza uralensis Fisch. (Fabaceae) is another plant with potential antidepressant-like effects that are associated with its content of at least five flavonoids (i.e., liquiritin, liquiritigenin, isoliquiritigenin, isoononin, and 7,4' dihydroxyflavone). An extract of this plant inhibited the production of tumor necrosis factor-[alpha] (TNF-[alpha]) in microglial cells in mice [95]. These findings are important because TNF-[alpha] has been detected in high concentrations in patients with anxiety and depression symptoms. Therefore, a reduction of TNF-[alpha] could be beneficial for ameliorating symptoms of anxiety and depression, as is the case with other antidepressant agents. The flavonoid isoliquiritigenin also inhibits TNF-[alpha] and increases the concentration of BDNF in the hippocampus and cerebral cortex [95]. Administration of the flavonoid 5,7-dihydroxyflavone (chrysin) at doses of 1 and 10 mg/kg for 60 days increased BDNF concentrations in the hippocampus and prefrontal cortex [96] and produced antidepressant-like effects in the forced swim test in mice [10]. These data are relevant because higher plasma and brain concentrations of BDNF were detected when clinically effective antidepressant drugs were administered in experimental animals (for review, see [97]) and depressed patients (for review, see [80]), suggesting that flavonoids have a similar pharmacological profile as conventional antidepressant drugs.

Su et al. (2014) [98] evaluated the effects of the Chinese herbal formula Xiao Chai Hu Tang, which contains parts from plants described as Radix Bupleuri Chinensis, Radix Scutellariae Baicalensis, ginseng, Rhizoma Pinelliae Ternatae, Radix Glycyrrhiza Uralensis, Rhizoma Zingiberis Recens, and Fructus Jujubae. This herbal preparation contains a high percentage of flavonoids, glycosylated flavonoids, and saponins. The authors tested the effects of administration of 0.6,1.7, and 5 mg/kg for 4 weeks. The extract was administered in male Sprague-Dawley rats subjected to CUMS, and the effects were evaluated in the open field test; glucose preference and consumption and food consumption were also evaluated. The results showed that CUMS reduced glucose preference and food consumption, reflecting anhedonia, which is a principal symptom in depressed patients. Interestingly, these deleterious effects of CUMS were prevented by the herbal preparation Xiao Chai Hu Tang, which was associated with higher levels of BDNF, nerve growth factor (NGF), and tropomyosin receptor kinase A (TrkA) and tropomyosin receptor kinase B (TrkB) in the hippocampus [98].

Another study explored the effects of a standardized extract used in traditional Chinese medicine. This herbal preparation, Xiaobuxin-Tang, includes Flos Inulae, Folium Phyllostachydis Henonis, and Semen Sojae Preparatum and contains a high percentage of flavonoids. A dose of 100 mg/kg of this extract produced antidepressant-like effects in male ICR mice, which were blocked by pretreatment with L-arginine (750 mg/kg), a precursor of nitric oxide synthesis. Coadministration of 7-nitroindazole (50 mg/kg), an inhibitor of nitric oxide synthesis, potentiated the action of an ineffective dose of Xiaobuxin-Tang (50 mg/kg) to produce antidepressant-like effects [41]. These findings suggest that the antidepressant-like effect of this extract involves nitric oxide signaling. A similar mechanism has been reported for lamotrigine, which also has antidepressant-like activity [99].

Apocynum venetum L. (Apocynaceae) extract produces antidepressant-like effects in male CD rats subjected to the forced swim test, apparently by their high content of hyperoside and isoquercitrin which are major flavonoids in the extract [100]. Different doses (25,50, and 100 mg/kg) of an Apocynum venetum L. extract that contained a high percentage of flavonoids were also evaluated in male ICR mice [18]. The 50 and 100 mg/kg doses significantly reduced immobility time in both the forced swim test and the tail suspension test, without producing nonspecific effects on motor activity in the open field test, a typical effect of substances with antidepressant activity [101]. These antidepressant-like effects were associated with higher concentrations of norepinephrine and dopamine and their metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), respectively, in the hippocampus. Furthermore, these antidepressant-like effects were blocked by pretreatment with the dopamine [D.sub.1] receptor antagonist SCH23390 (0.05 mg/kg) and [D.sub.2/3] receptor antagonist sulpiride (50 mg/kg) [18], confirming that the antidepressant-like effects of Apocynum venetum L. occur through actions on the dopaminergic system. This mechanism of action is important because clinically effective antidepressant drugs, such as clomipramine (tricyclic antidepressant) and fluoxetine (selective serotonin reuptake inhibitor), activate the serotonergic and noradrenergic systems in the long term and parallelly also activate the mesolimbic dopamine system producing their antidepressant effects [102-104].

The aforementioned data show that flavonoids and likely other active metabolites that are contained in plant extracts may contribute to the antidepressant-like effects of plants that are used in traditional medicine to ameliorate symptoms of depression. These beneficial effects appear to occur through the activation of neurotransmitter systems and other neuronal processes. The activation of neurotrophic factors, such as BDNF, significantly impacts neuronal function. The activation of neurotransmitter systems (i.e., principally serotonergic, noradrenergic, and dopaminergic) in specific brain areas (e.g., hippocampus and prefrontal cortex) reactivates chemical communication in the long term, thus allowing plastic changes and subsequently the therapeutic effects of antidepressant drugs [105]. Preclinical research has also investigated the effects of specific flavonoids that are extracted from medicinal plants. These flavonoids have been purified, chemically characterized, and prepared for administration. Such efforts have allowed the identification of specific flavonoids that have potential antidepressant-like effects.

5. Antidepressant-Like Effects of Flavonoids Isolated from Plants

Flavonoids produce pharmacological actions on the central nervous system (Table 2) to regulate emotional and mood states associated with plastic and neurochemical changes as is the case with conventional antidepressant drugs [9, 10, 38, 101].

Preclinical studies have also reported the potential antidepressant-like effects of specific flavonoids (Table 3). Hesperidin is a flavonoid that has different pharmacological actions (e.g., antioxidant, antineoplastic, and neuroprotective effects) in vitro and in vivo. This flavonoid has been studied as a potential antidepressant agent because of its actions on the serotonergic, dopaminergic, and noradrenergic systems. The administration of 0.1, 0.3, and 1 mg/kg hesperidin (i.p.) for 21 days in Swiss mice significantly reduced total immobility time in the tail suspension test. This antidepressant-like effect was associated with a significant increase in BDNF concentrations in the hippocampus [9] and actions at the 5-[HT.sub.1A] receptors [106]. Also, the administration of 10, 20, and 40 mg/kg astilbin (i.p.) for21daysinmaleC57BL/ 6L mice exerted antidepressant-like effects in the forced swim test, tail suspension test, and CUMS paradigm, and these effects were associated with an increase in BDNF concentrations in the cerebral cortex. These effects were similar to those produced by 10 mg/kg of the tricyclic antidepressant imipramine [34].

The behavioral and molecular effects of the flavonoid baicalein (40 mg/kg, i.p., for 14 days) were evaluated in male Sprague-Dawley rats. Baicalein significantly reduced total immobility time, similar to the antidepressant fluoxetine, in the forced swim test. This antidepressant-like effect was associated with activation of the dopaminergic system and greater expression of BDNF mRNA in the hippocampus, an effect also detected with the antidepressant fluoxetine [35]. In support, injections of baicalein (1, 2, and 4 mg/kg, i.p., for 21 days) in male Kunming mice subjected to CUMS reduced immobility time in the forced swim and tail suspension tests, which was accompanied by an increase in extracellular signal-regulated kinase and BDNF expression in the hippocampus, similar to 15 mg/kg of the antidepressant imipramine [36].

Another flavonoid, baicalin, isolated from the dried root of Scutellaria baicalensis Georgi (Labiatae), produces an antidepressant-like effect in the forced swim and tail suspension tests in mice treated with 25 and 50 mg/kg, p.o. This effect was similar to that produced by 20 mg/kg of the antidepressant fluoxetine. Apparently, the baicalin effect was associated with inhibition of monoamine oxidase enzymes types A and B [107], a mechanism of action involved in the therapeutic effect of some antidepressant drugs.

The administration of 10, 20, 30 mg/kg of the flavonoid vitexin (p.o.) also significantly reduced total immobility time in both the forced swim and the tail suspension tests. Interestingly, animals treated with vitexin exhibited a significant increase in the time spent climbing in the forced swim test [53], suggesting that activation of the noradrenergic system maybe involved in the antidepressant-like effect of this flavonoid. A selective increase in the time spent climbing is only produced by antidepressant drugs that act on the noradrenergic system [108]. Injections of the serotonin 5-[HT.sub.1A] receptor antagonist 1-(2-methoxyphenyl)4-(4-[2-phthalimido]butyl)-piperazine (NAN-190) or dopamine receptor antagonist SCH23390 blocked the antidepressant-like effect of vitexin [53], indicating that the antidepressant-like effects involve the activation of at least three neurotransmitter systems (i.e., serotonergic, noradrenergic, and dopaminergic). Similarly, the flavonoid nobiletin (25, 50, and 100 mg/kg, p.o.), isolated from citrus peels, produces antidepressant-like effects in the forced swim and tail suspension tests in male ICR mice. Interestingly, these effects are blocked by previous injection of WAY 100635 (a serotonin 5-[HT.sub.1A] receptor antagonist), cyproheptadine (a serotonin 5-[HT.sub.2A] receptor antagonist), prazosin (an [[alpha].sub.1] -adrenoceptor antagonist), SCH23390 (a dopamine [D.sub.1] receptor antagonist), or sulpiride (a dopamine D2 receptor antagonist), showing that the antidepressant-like effect of nobiletin involves participation of serotonergic, noradrenergic, and dopaminergic systems [109], as is the case as well with bioflavonoid apigenin in several brain structures [59]. This multiple mechanism of action is unsurprising. The administration of standardized herbal products or phytomedicines prepared with Hypericum perforatum L. (Hypericaceae) extracts activates multiple neurotransmitter systems and produces both preclinical and clinical antidepressant effects [110-112]. However, these multiple actions have been associated with some severe side effects [113]. Further studies are necessary to explore the multiple actions of flavonoids in the brain under different experimental conditions (e.g., acute or chronic treatment) to identify potential side effects to ensure consumer safety.

Other flavonoids with antioxidant, anti-inflammatory, and neuroprotective effects have also been evaluated as potential antidepressant agents, one example of which is the flavonoid fisetin. The administration of 10 and 20 mg/kg fisetin (i.p.) significantly reduced total immobility time in the forced swim and tail suspension tests [38]. This antidepressant-like effect was apparently produced by activation of the serotonergic system. The blockade of serotonin synthesis by pretreatment with p-chlorophenylalanine blocked the antidepressant-like effect of fisetin. This study also found that fisetin inhibited the activity of MAO-A, which is involved in the metabolism of serotonin and norepinephrine [38]. Similarly to other flavonoids, fisetin seems to exert its antidepressant-like effects through at least two different mechanisms of action: activating the serotonergic system and inhibiting monoamine metabolism. However, other neurotransmitter systems could be involved in the antidepressant-like effect produced by flavonoids. Two synthetic flavones, 3'-methoxy-6-methylflavone and 3'hydroxy-6-methylflavone, in doses of 100 mg/kg, i.p., produce antidepressant-like effects in the forced swim and tail suspension tests, similar to antidepressant imipramine [114]. Interestingly, the effect produced by both synthetic flavonoids was partially ameliorated by coadministration of bicuculline (a competitive [gamma]-aminobutyric acid binding site antagonist), suggesting the modulation/direct activation of the GABAa receptors, as is the case with neurosteroids with antidepressant-like activity [85, 86].

Depressive disorders are highly prevalent in diabetic patients. Using a preclinical model of diabetes that was induced by streptozotocin in mice, the effects of the bioflavonoid quercetin (50 and 100 mg/kg, i.p.) were compared with fluoxetine (5 mg/kg, i.p.) and imipramine (15 mg/kg, i.p.) in the forced swim test [115]. Results showed that quercetin significantly reduced depressive-like behavior in diabetic mice, similar to the conventional antidepressants fluoxetine and imipramine. Interestingly, the quercetin-induced reduction of depressive-like behavior was only detected in diabetic mice and not in healthy mice, while fluoxetine and imipramine produced antidepressant-like effects in both diabetic and healthy mice. In another study, quercetin (50 mg/kg, i.p., for 21 days) also exerted antidepressant-like effects in diabetic rats in the forced swim test. These effects did not involve regulation of the hypothalamic-pituitary-adrenal axis, in which this flavonoid did not produce significant changes in plasma adrenocorticotropic hormone or corticosterone concentrations [54]. These data suggest that quercetin may have a mechanism of action that is different from conventional antidepressants. The antidepressant-like effects of quercetin have been suggested to primarily occur through antioxidative actions and a reduction of proinflammatory cytokine concentrations in the brain [54] that in the long term restore neurochemical function as is the case with conventional antidepressant drugs. Future studies should explore the ability of quercetin to ameliorate symptoms of depression, particularly in diabetic patients.

Finally, studies of the neurobiological bases of depressive disorders and mechanisms of action of antidepressant drugs have shown that reductions of neurotransmitter system activity and BDNF concentrations are associated with depressive symptoms in humans [116] and depression-like behavior in stressor-exposed rats [42]. A reduction of BDNF synthesis has been observed in the hippocampus and cerebral cortex, among other brain structures, in experimental animals. Antidepressant drugs increase BDNF production in both animals and depressed patients [97, 117], suggesting a negative correlation between BDNF concentrations and the severity of depressive symptoms.

Mice that are subjected to CUMS develop symptoms of anhedonia (e.g., a reduction of sucrose preference and consumption) and depressive-like behavior (e.g., increase in immobility time in the forced swim test), and these effects were prevented by oral administration of 5 and 20 mg/kg of the flavonoid chrysin after 28 days of treatment. This antidepressant-like effect of chrysin was accompanied by an increase in BDNF concentrations in the hippocampus and prefrontal cortex and the activation of NGF in mice [10]. Additionally, flavonoid chrysin (5 and 20 mg/kg, p.o., 28 days), similar to antidepressant fluoxetine (10 mg/kg, p.o., 28 days), increases serotonin concentration and reduces the indoleamine-2,3-dioxygenase and caspases 3 and 9 activities in the prefrontal cortex and hippocampus in C57B/6J mice subjected to CUMS, which was associated with the antidepressant-like effect detected in the tail suspension test [118], with the participation of BDNF. Similarly, the administration of 20 and 40 mg/kg of the flavonoid orientin for 21 days also produced antidepressant-like effects in mice that were subjected to CUMS, and this effect was associated with the activation of BDNF and an increase in serotonin and norepinephrine concentration in the hippocampus and cerebral cortex [40]. The administration of 20 and 40 mg/kg of the flavonoid icariin for 35 days also produced antidepressant-like effects in rats that were subjected to CUMS. In that study, control animals presented significant neuronal damage and neuroinflammation in the hippocampus, which were associated with higher oxidative stress. These deleterious effects were reversed by the administration of icariin at doses that reduced depressive-like behavior [42]. These studies suggest that the antioxidant activity and the activation of monoaminergic systems are associated with the production of BDNF by flavonoids [119], ultimately producing antidepressant-like effects in animals. However, this hypothesis requires further exploration.

6. Concluding Remarks

Preclinical data on the antidepressant-like effects of some flavonoids have consistently reported behavioral effects and neurochemical actions in the brain, thus supporting the potential therapeutic application of these natural compounds for the amelioration of depressive symptoms in humans. The data that were reviewed herein implicate BDNF in the antidepressant-like effects of flavonoids. This mechanism of action is relevant because it has been associated with the actions of clinically effective antidepressant drugs [80,120]. BDNF modulates neurotransmitters and receptor activity and is involved in the activation of serotonergic, noradrenergic, and dopaminergic pathways and neurogenesis in the hippocampus and cerebral cortex, which are implicated in the neurobiology of psychiatric disorders, including depression.

Activation of BDNF and TrkB is produced after administration of conventional antidepressant drugs, such as fluoxetine and citalopram [28, 101, 121], which is associated with the reduction of most of the symptoms of depression [97, 122-124]. Some flavonoids (e.g., 7,8-dihydroxyflavone) also act as TrkB receptor agonists and stimulate neurogenesis in the hippocampus [41]. Such findings may reveal new possibilities for the development of therapeutic alternatives for the treatment of depression, including the administration of subthreshold doses of flavonoids combined with conventional antidepressant drugs. Combined administration of both substances could likely produce antidepressant-like effects with a shorter onset of action through the early stimulation of BDNF production and parallelly modify the neurotransmitter receptor function, which requires further exploration.

Finally, despite the positive findings regarding the antidepressant-like effects of some flavonoids at the preclinical level, potential side effects of long-term consumption need to be investigated, including studies of toxicology and possible pharmacological interactions with other substances, to determine the tolerability and safety of flavonoids in humans. Such studies may eventually demonstrate that some flavonoids are safe alternatives for the treatment of depressive disorders in clinical practice.

https://doi.org/10.1155/2018/2963565

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors would like to thank Michel Arends for revising and editing the English of this manuscript. Leoon Jesus German-Ponciano and Gilberto Uriel Rosas-Sanchez received fellowships from Consejo Nacional de Ciencia y Tecnologla (CONACyT) for postgraduate studies in neuroethology (Reg. nos. 297560 and 592165, resp.).

References

[1] R. C. Kessler, "The costs of depression," Psychiatric Clinics of North America, vol. 35, no. 1, pp. 1-14, 2014.

[2] World Health Organization, "Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level: report by the Secretariat," World Health Organization Geneva, Switzerland, 2011. http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_R8-en.pdf.

[3] C. J. Harmer, R. S. Duman, and P. J. Cowen, "How do antidepressants work? New perspectives for refining future treatment approaches," The Lancet Psychiatry, vol. 4, no. 5, pp. 409-418, 2017.

[4] Y. Xing, J. He, J. Hou, F. Lin, J. Tian, and H. Kurihara, "Gender differences in CMS and the effects of antidepressant venlafaxine in rats," Neurochemistry International, vol. 63, no. 6, pp. 570-575, 2013.

[5] M. Olivares-Nazario, A. Fernandez-Guasti, and L. Martinez-Mota, "Age-related changes in the antidepressant-like effect of desipramine and fluoxetine in the rat forced-swim test," Behavioural Pharmacology, vol. 27, no. 1, pp. 22-28, 2016.

[6] C. Lopez-Rubalcava and E. Estrada-Camarena, "Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research," Journal of Ethnopharmacology, vol. 186, pp. 377-391, 2016.

[7] F. Ferre Navarrete and D. Gimeno Alvarez, "Protocolo diagnostico y tratamiento de la ansiedad generalizada," Medicine Programa de Formacion Medica Continuada Acreditado, vol. 10, no. 86, pp. 5846-5850, 2011.

[8] I. Matias, A. S. Buosi, and F. C. A. Gomes, "Functions of flavonoids in the central nervous system: Astrocytes as targets for natural compounds," Neurochemistry International, vol. 95, pp. 85-91, 2016.

[9] F. Donato, M. G. de Gomes, A. T. R. Goes et al., "Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: Possible role of l-arginine-NO-cGMP pathway and BDNF levels," Brain Research Bulletin, vol. 104, pp. 19-26, 2014.

[10] C. B. Filho, C. R. Jesse, F. Donato et al., "Chronic unpredictable mild stress decreases BDNF and NGF levels and [Na.sup.+],[K.sup.+]-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin," Neuroscience, vol. 289, pp. 367-380, 2015.

[11] J. B. Harborne and C. A. Williams, "Advances in flavonoid research since 1992," Phytochemistry, vol. 55, no. 6, pp. 481-504, 2000.

[12] S. Martinez-Florez, J. Gonzalez-Gallego, J. M. Culebras, and M. J. Tunon, "Los flavonoides: propiedades y acciones antioxidantes," Nutricion Hospitalaria, vol. 17, no. 6, pp. 271-278,2002.

[13] T. Yan, B. Wu, Z.-Z. Liao et al., "Brain-derived neurotrophic factor signaling mediates the antidepressant-like effect of the total flavonoids of Alpiniae oxyphyllae fructus in chronic unpredictable mild stress mice," Phytotherapy Research, vol. 30, no. 9, pp. 1493-1502, 2016.

[14] B. Du, C. Zhang, F. Ren et al., "Antidepressant-like effects of the hydroalcoholic extracts of Hemerocallis Citrina and its potential active components," BMC Complementary and Alternative Medicine, vol. 14, no. 1, p. 326, 2014.

[15] P. Xu, K. Z. Wang, C. Lu et al., "Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism," Journal of Ethnopharmacology, vol. 194, pp. 819-826, 2016.

[16] S.-X. Yan, J.-L. Lang, Y.-Y. Song et al., "Studies on antidepressant activity of four flavonoids isolated from Apocynum venetum linn (Apocynaceae) leaf in mice," Tropical Journal of Pharmaceutical Research, vol. 14, no. 12, pp. 2269-2277, 2015.

[17] M. A. Ebrahimzadeh, S. M. Nabavi, and S. F. Nabavi, "Antidepressant activity of Hibiscus esculentus L," European Review for Medical and Pharmacological Sciences, vol. 17, no. 19, pp. 2609-2612, 2013.

[18] M. Zheng, Y. Fan, D. Shi, and C. Liu, "Antidepressant-like effect of flavonoids extracted from Apocynum venetum leaves on brain monoamine levels and dopaminergic system," Journal of Ethnopharmacology, vol. 147, no. 1, pp. 108-113, 2013.

[19] Z. Z. Fan, W. H. Zhao, J. Guo et al., "Antidepressant activities of flavonoids from Glycyrrhiza uralensis and its neurogenesis protective effect in rats," Acta Pharmaceutica Sciencia, vol. 47, no. 12, pp. 1612-1617, 2012.

[20] G. Jia, Z. Weihong, F. Zizhou et al., "Effects of the flavonoids extracted parts on antidepressant activities from Glycyrrhiza uralensis," Pharmacology and Clinics of Chinese Materia Medica, vol. 6, p. 20, 2012.

[21] M. Herrera-Ruiz, A. Zamilpa, M. Gonzalez-Cortazar et al., "Antidepressant effect and pharmacological evaluation of standardized extract of flavonoids from Byrsonima crassifolia," Phytomedicine, vol. 18, no. 14, pp. 1255-1261, 2011.

[22] C. F. Ortmann, G. Z. Reus, Z. M. Ignacio et al., "Enriched flavonoid fraction from cecropia pachystachya trecul leaves exerts antidepressant-like behavior and protects brain against oxidative stress in rats subjected to chronic mild stress," Neurotoxicity Research, vol. 29, no. 4, pp. 469-483, 2016.

[23] J. Cassani, O. A. Ferreyra-Cruz, A. M. Dorantes-Barron, R. M. Vigueras Villasenor, D. Arrieta-Baez, and R. Estrada-Reyes, "Antidepressant-like and toxicological effects of a standardized aqueous extract of Chrysactinia mexicana A. Gray (Asteraceae) in mice," Journal of Ethnopharmacology, vol. 171, pp. 295-306, 2015.

[24] S. Park, Y. Sim, P. Han, J. Lee, and H. Suh, "Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica var.Saboten," Experimental Neurobiology, vol. 19, no. 1, p. 30, 2010.

[25] P. B. Shewale, R. A. Patil, and Y. A. Hiray, "Antidepressant-like activity of anthocyanidins from Hibiscus rosa-sinensis flowers in tail suspension test and forced swim test," Indian Journal of Pharmacology, vol. 44, no. 4, pp. 454-457, 2012.

[26] S. Batra and S. Kumar, "Antidepressant activity evaluation of Actaea spicata L. Roots," Journal of Fundamental Pharmaceutical Research, vol. 2, no. 1, pp. 1-6, 2014.

[27] B. K. Vazhayil, S. S. Rajagopal, T. Thangavelu, G. Swaminathan, and E. Rajagounder, "Neuroprotective effect of Clerodendrum serratum Linn. leaves extract against acute restraint stress-induced depressive-like behavioral symptoms in adult mice," Indian Journal of Pharmacology, vol. 49, no. 1, pp. 34-41, 2017.

[28] L.-T. Yi, B.-B. Liu, J. Li et al., "BDNF signaling is necessary for the antidepressant-like effect of naringenin," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 48, pp. 135-141, 2014.

[29] L.-T. Yi, J. Li, H.-C. Li et al., "Antidepressant-like behavioral, neurochemical and neuroendocrine effects of naringenin in the mouse repeated tail suspension test," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 39, no. 1, pp. 175-181, 2012.

[30] J. B. I. De La Pena, C. A. Kim, H. L. Lee et al., "Luteolin mediates the antidepressant-like effects of Cirsium japonicum in mice, possibly through modulation of the GABAA receptor," Archives of Pharmacal Research, vol. 37, no. 2, pp. 263-269, 2014.

[31] M. Ishisaka, K. Kakefuda, M. Yamauchi et al., "Luteolin shows an antidepressant-like effect via suppressing endoplasmic reticulum stress," Biological & Pharmaceutical Bulletin, vol. 34, no. 9, pp. 1481-1486, 2011.

[32] M.-J. Gong, B. Han, S.-M. Wang, S.-W. Liang, and Z.-J. Zou, "Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats," Journal of Pharmaceutical and Biomedical Analysis, vol. 123, pp. 63-73, 2016.

[33] M. S. Antunes, C. R. Jesse, J. R. Ruff et al., "Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity," European Journal of Pharmacology, vol. 789, pp. 411-420, 2016.

[34] Q.-Q. Lv, W.-J. Wu, X.-L. Guo et al., "Antidepressant activity of astilbin: Involvement of monoaminergic neurotransmitters and BDNF signal pathway," Biological & Pharmaceutical Bulletin, vol. 37, no. 6, pp. 987-995, 2014.

[35] B. Lee, B. Sur, J. Park et al., "Chronic administration of baicalein decreases depression-like behavior induced by repeated restraint stress in rats," Korean Journal of Physiology & Pharmacology, vol. 17, no. 5, pp. 393-403, 2013.

[36] Z. Xiong, B. Jiang, P.-F. Wu et al., "Antidepressant effects of a plant-derived flavonoid baicalein involving extracellular signal-regulated kinases cascade," Biological & Pharmaceutical Bulletin, vol. 34, no. 2, pp. 253-259, 2011.

[37] C. B. Filho, C. R. Jesse, F. Donato et al., "Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice," Chemico-Biological Interactions, vol. 260, pp. 154-162, 2016.

[38] L. Zhen, J. Zhu, X. Zhao et al., "The antidepressant-like effect of fisetin involves the serotonergic and noradrenergic system," Behavioural Brain Research, vol. 228, no. 2, pp. 359-366, 2012.

[39] Y. Wang, B. Wang, J. Lu et al., "Fisetin provides antidepressant effects by activating the tropomyosin receptor kinase B signal pathway in mice," Journal of Neurochemistry, vol. 143, no. 5, pp. 561-568, 2017.

[40] Y. Liu, N. Lan, J. Ren et al., "Orientin improves depression-like behavior and BDNF in chronic stressed mice," Molecular Nutrition & Food Research, vol. 59, no. 6, pp. 1130-1142, 2015.

[41] L.-M. Zhang, H.-L. Wang, N. Zhao, H.-X. Chen, Y.-F. Li, and Y.-Z. Zhang, "Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of the total flavonoids extracted from Xiaobuxin-Tang," Neuroscience Letters, vol. 575, pp. 31-36, 2014.

[42] B. Liu, C. Xu, X. Wuet al., "Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation," Neuroscience, vol. 294, pp. 193-205, 2015.

[43] Z. Ren, P. Yan, L. Zhu et al., "Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation," Psychopharmacology, vol. 235, no. 1, pp. 233-244, 2018.

[44] V. N. Thakare, M. K. Aswar, Y. P. Kulkani, R. R. Patil, and B. M. Patel, "Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response," Physiology Behavior, vol. 179, pp. 401-410, 2017.

[45] E. Meyer, M. A. Mori, A. C. Campos et al., "Myricitrin induces antidepressant-like effects and facilitates adult neurogenesis in mice," Behavioural Brain Research, vol. 316, pp. 59-65, 2017.

[46] Z. Ma, G. Wang, L. Cui, and Q. Wang, "Myricetin attenuates depressant-like behavior in mice subjected to repeated restraint stress," International Journal of Molecular Sciences, vol. 16, no. 12, pp. 28377-28385, 2015.

[47] A. Sawamoto, S. Okuyama, K. Yamamoto et al., "3,5,6,7,8,31,41 -Heptamethoxyflavone, a citrus flavonoid, Ameliorates corticosterone-induced depression-like behavior and restores brain-derived neurotrophic factor expression, neurogenesis, and neuro-plasticity in the hippocampus," Molecules, vol. 21, no. 4, article no. 541, 2016.

[48] A. Sawamoto, S. Okuyama, Y. Amakura et al., "3,5,6,7,8,3',4'-Heptamethoxyflavone ameliorates depressive-like behavior and hippocampal neurochemical changes in chronic unpredictable mild stressed mice by regulating the brain-derived neurotrophic factor: requirement for erk activation," International Journal of Molecular Sciences, vol. 18, no. 10, p. 2133, 2017.

[49] L. Weng, X. Guo, Y. Li, X. Yang, and Y. Han, "Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice," European Journal of Pharmacology, vol. 774, pp. 50-54, 2016.

[50] V. Butterweck, M. Hegger, and H. Winterhoff, "Flavonoids of St. John's Wort reduce HPA axis function in the rat," Planta Medica, vol. 70, no. 10, pp. 1008-1011, 2004.

[51] W. Wang, X. Hu, Z. Zhao et al., "Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 32, no. 5, pp. 1179-1184, 2008.

[52] L.-T. Yi, C.-F. Li, X. Zhan et al., "Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 34, no. 7, pp. 1223-1228, 2010.

[53] O. D. Can, U. Demir Ozkay, and U. I. Ucel, "Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms," European Journal of Pharmacology, vol. 699, no. 1-3, pp. 250-257, 2013.

[54] E. A. Demir, H. S. Gergerlioglu, and M. Oz, "Antidepressant-like effects of quercetin in diabetic rats are independent of hypothalamic-pituitary-adrenal axis," Acta Neuropsychiatrica, vol. 28, no. 1, pp. 23-30, 2016.

[55] P. Rinwa and A. Kumar, "Quercetin suppress microglial neuroinflammatory response and induce antidepressent-like effect in olfactory bulbectomized rats," Neuroscience, vol. 255, pp. 86-98, 2013.

[56] I. Holzmann, L. M. Da Silva, J. A. Correa Da Silva, V. M. B. Steimbach, and M. M. De Souza, "Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways," Pharmacology Biochemistry & Behavior, vol. 136, pp. 55-63, 2015.

[57] M. Gonzalez-Cortazar, A. M. Maldonado-Abarca, E. Jimenez-Ferrer et al., "Isosakuranetin-5-O-rutinoside: A New Flavanone with Antidepressant Activity Isolated from Salvia elegans Vahl," Molecules, vol. 18, no. 11, pp. 13260-13270, 2013.

[58] M. Kwatra, A. Jangra, M. Mishra et al., "Naringin and sertraline ameliorate doxorubicin-induced behavioral deficits through modulation of serotonin level and mitochondrial complexes protection pathway in rat hippocampus," Neurochemical Research, vol. 41, no. 9, pp. 2352-2366, 2016.

[59] L.-T. Yi, J.-M. Li, Y.-C. Li, Y. Pan, Q. Xu, and L.-D. Kong, "Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin," Life Sciences, vol. 82, no. 13-14, pp. 741-751, 2008.

[60] M.-W. Zhang, S.-F. Zhang, Z.-H. Li, and F. Han, "7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress," Neuroscience Letters, vol. 635, pp. 33-38, 2016.

[61] K. Wei, Y. Xu, Z. Zhao et al., "Icariin alters the expression of glucocorticoid receptor, FKBP5 and SGK1 in rat brains following exposure to chronic mild stress," International Journal of Molecular Medicine, vol. 38, no. 1, pp. 337-344, 2016.

[62] S. P. Fernandez, C. Wasowski, L. M. Loscalzo et al., "Central nervous system depressant action of flavonoid glycosides," European Journal of Pharmacology, vol. 539, no. 3, pp. 168-176, 2006.

[63] A. C. Paladini, M. Marder, H. Viola, C. Wolfman, C. Wasowski, and J. H. Medina, "Flavonoids and the central nervous system: From forgotten factors to potent anxiolytic compounds," Journal of Pharmacy and Pharmacology, vol. 51, no. 5, pp. 519-526, 1999.

[64] E. Middleton Jr., C. Kandaswami, and T. C. Theoharides, "The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer," Pharmacological Reviews, vol. 52, no. 4, pp. 673-751, 2000.

[65] S. F. Nabavi, N. Braidy, S. Habtemariam et al., "Neuroprotective effects of chrysin: from chemistry to medicine," Neurochemistry International, vol. 90, pp. 224-231, 2015.

[66] M. Bakhtiari, Y. Panahi, J. Ameli, and B. Darvishi, "Protective effects of flavonoids against Alzheimer's disease-related neural dysfunctions," Biomedicine & Pharmacotherapy, vol. 93, pp. 218-229, 2017.

[67] M. Ebadi, Pharmacodynamic Basis of Herbal Medicine, CRC Press, Florida, FLa, USA, 2001.

[68] J.-G. Berrin, W. R. McLauchlan, P. Needs et al., "Functional expression of human liver cytosolic [beta]-glucosidase in Pichia pastoris: Insights into its role in the metabolism of dietary glucosides," European Journal of Biochemistry, vol. 269, no. 1, pp. 249-258, 2002.

[69] K. Nometh, G. W. Plumb, J.-G. Berrin et al., "Deglycosylation by small intestinal epithelial cell [beta]-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans," European Journal of Nutrition, vol. 42, no. 1, pp. 29-42, 2003.

[70] C. Manach, A. Scalbert, C. Morand, C. Remesy, and L. Jimenez, "Polyphenols: food sources and bioavailability," American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727-747, 2004.

[71] A. Roohbakhsh, H. Parhiz, F. Soltani, R. Rezaee, and M. Iranshahi, "Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin--A mini-review," Life Sciences, vol. 113, no. 1-2, pp. 1-6, 2014.

[72] U. K. Walle, A. Galijatovic, and T. Walle, "Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2," Biochemical Pharmacology, vol. 58, no. 3, pp. 431-438,1999.

[73] A. G. de Boer and P. J. Gaillard, "Drug targeting to the brain," Annual Review of Pharmacology and Toxicology, vol. 47, no. 1, pp. 323-355, 2007.

[74] I. Mendez-David, L. Tritschler, Z. El Ali et al., "Nrf2-signaling and BDNF: A new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression," Neuroscience Letters, vol. 597, pp. 121-126,2015.

[75] R. Ghosh, R. Gupta, M. S. Bhatia, A. K. Tripathi, and L. K. Gupta, "Comparison of efficacy, safety and brain derived neurotrophic factor (BDNF) levels in patients of major depressive disorder, treated with fluoxetine and desvenlafaxine," Asian Journal of Psychiatry, vol. 18, pp. 37-41, 2015.

[76] H. H. Stassen, J. Angst, and A. Delini-Stula, "Delayed onset of action of antidepressant drugs. Survey of recent results," European Psychiatry, vol. 12, no. 4, pp. 166-176,1997.

[77] J. Sarris and D. J. Kavanagh, "Kava and St. John's wort: Current evidence for use in mood and anxiety disorders," The Journal of Alternative and Complementary Medicine, vol. 15, no. 8, pp. 827-836, 2009.

[78] Q. Wang, M. A. Timberlake, K. Prall, and Y. Dwivedi, "The recent progress in animal models of depression," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 77, pp. 99-109, 2017.

[79] H. M. Abelaira, G. Z. Rous, and J. Quevedo, "Animal models as tools to study the pathophysiology of depression," Revista Brasileira de Psiquiatria, vol. 35, no. 2, pp. S112-S120, 2013.

[80] C. Zhou, J. Zhong, B. Zou et al., "Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression," PLoS ONE, vol. 12, no. 2, Article ID e0172270, 2017.

[81] H. Park, S. Yoon, J. Choi et al., "The antidepressant effects of Cirsium japonicum in ICR mice," Yakhak Hoeji, vol. 50, no. 6, pp. 429-435, 2006.

[82] A. Abdelhalim, N. Karim, M. Chebib et al., "Antidepressant, anxiolytic and antinociceptive activities of constituents from rosmarinus officinalis," Journal of Pharmacy & Pharmaceutical Sciences, vol. 18, no. 4, pp. 448-459, 2015.

[83] M. Lin, H. Li, Y. Zhao et al., "Ergosteryl 2-naphthoate, an ergosterol derivative, exhibits antidepressant effects mediated by the modification of GABAergic and glutamatergic systems," Molecules, vol. 22, no. 4, article no. 565, 2017.

[84] R. T. Khisti, C. T. Chopde, and S. P. Jain, "Antidepressant-like effect of the neurosteroid 3a-hydroxy-5a-pregnan-20-one in mice forced swim test," Pharmacology Biochemistry & Behavior, vol. 67, no. 1, pp. 137-143, 2000.

[85] J. F. Rodriguez-Landa, C. M. Contreras, B. Bernal-Morales, A. G. Gutierrez-Garcia, and M. Saavedra, "Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the [GABA.sub.A] receptor in the rat," Journal of Psychopharmacology, vol. 21, no. 1, pp. 76-84, 2007.

[86] J. F. Rodriguez-Landa, C. M. Contreras, and R. I. Garcia-Rios, "Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: Participation of the GABAA receptor," Behavioural Pharmacology, vol. 20, no. 7, pp. 614-622, 2009.

[87] D. G. Machado, L. E. B. Bettio, M. P. Cunha et al., "Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: Evidence for the involvement of the serotonergic and noradrenergic systems," European Journal of Pharmacology, vol. 587, no. 1-3, pp. 163-168, 2008.

[88] A. Paulke, M. Noldner, M. Schubert-Zsilavecz, and M. Wurglics, "St. John's wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses," Die Pharmazie, vol. 63, no. 4, pp. 296-302, 2008.

[89] S. Yoshino, A. Hara, H. Sakakibara et al., "Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria," Nutrition Journal, vol. 27, no. 7-8, pp. 847-852, 2011.

[90] L. An, J. Li, S.-T. Yu et al., "Effects of the total flavonoid extract of Xiaobuxin-Tang on depression-like behavior induced by lipopolysaccharide and proinflammatory cytokine levels in mice," Journal of Ethnopharmacology, vol. 163, pp. 83-87, 2015.

[91] S.-H. Lin, M.-L. Chou, W.-C. Chen et al., "A medicinal herb, Melissa officinalis L. ameliorates depressive-like behavior of rats in the forced swimming test via regulating the serotonergic neurotransmitter," Journal of Ethnopharmacology, vol. 175, article no. 9741, pp. 266-272, 2015.

[92] A. E. Taiwo, F. B. Leite, G. M. Lucena et al., "Anxiolytic and antidepressant-like effects of Melissa officinalis (lemon balm) extract in rats: Influence of administration and gender," Indian Journal of Pharmacology, vol. 44, no. 2, pp. 189-192, 2012.

[93] V. Lopez, S. Martin, M. P. Gomez-Serranillos, M. E. Carretero, A. K. Jager, and M. I. Calvo, "Neuroprotective and neurological properties of Melissa officinalis," Neurochemical Research, vol. 34, no. 11, pp. 1955-1961, 2009.

[94] G. Rubio, L. San, F. Lopez-Munoz, and P. Garcia-Garcia, "Tratamiento de combination con reboxetina en pacientes con depresion mayor no respondedores o con respuesta parcial a inhibidores selectivos de la recaptacion de serotonina," Actas Espanolas de Psiquiatria, vol. 31, no. 6, pp. 315-324, 2003.

[95] S. P. Patil, C. Liu, J. Alban, N. Yang, and X. Li, "Glycyrrhiza uralensis flavonoids inhibit brain microglial cell TNF-[alpha] secretion, p-I[kappa]B expression, and increase brain-derived neurotropic factor (BDNF) secretion," Journal of Traditional Chinese Medical Sciences, vol. 1, no. 1, pp. 28-37, 2014.

[96] L. C. Souza, M. S. Antunes, C. B. Filho et al., "Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain," Pharmacology Biochemistry & Behavior, vol. 134, pp. 22-30, 2015.

[97] E. Castren and M. Kojima, "Brain-derived neurotrophic factor in mood disorders and antidepressant treatments," Neurobiology of Disease, vol. 97, pp. 119-126, 2017.

[98] G. Y. Su, J. Y. Yang, F. Wang et al., "Antidepressant-like effects of Xiaochaihutang in a rat model of chronic unpredictable mild stress," Journal of Ethnopharmacology, vol. 152, no. 1, pp. 217-226, 2014.

[99] S. Ostadhadi, M. Ahangari, V. Nikoui et al., "Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test," Biomedicine & Pharmacotherapy, vol. 82, pp. 713-721, 2016.

[100] V. Butterweck, S. Nishibe, T. Sasaki, and M. Uchida, "Antidepressant effects of apocynum venetum leaves in a forced swimming test," Biological & Pharmaceutical Bulletin, vol. 24, no. 7, pp. 848-851, 2001.

[101] J.-C. Zhang, J. Wu, Y. Fujita et al., "Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation," International Journal of Neuropsychopharmacology, vol. 18, no. 4, 2015.

[102] M. E. Breuer, L. Groenink, R. S. Oosting et al., "Antidepressant effects of pramipexole, a dopamine D3/D2 receptor agonist, and 7-OH-DPAT, a dopamine D3 receptor agonist, in olfactory bulbectomized rats," European Journal of Pharmacology, vol. 616, no. 1-3, pp. 134-140, 2009.

[103] Y. Li, Z. R. Zhu, B. C. Ou et al., "Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test," Behavioural Brain Research, vol. 279, pp. 100-105, 2015.

[104] J. Song, X. Hou, X. Hu et al., "Not only serotonergic system, but also dopaminergic system involved in albiflorin against chronic unpredictable mild stress-induced depression-like behavior in rats," Chemico-Biological Interactions, vol. 242, pp. 211-217,2015.

[105] P. Willner, J. Scheel-Kruger, and C. Belzung, "The neurobiology of depression and antidepressant action," Neuroscience & Biobehavioral Reviews, vol. 37, no. 10, pp. 2331-2371, 2013.

[106] L. C. Souza, M. G. de Gomes, A. T. R. Goes et al., "Evidence for the involvement of the serotonergic 5-HT1A receptors in the antidepressant-like effect caused by hesperidin in mice," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 40, no. 1, pp. 103-109, 2013.

[107] W. Zhu, S. Ma, R. Qu, D. Kang, and Y. Liu, "Antidepressant effect of baicalin extracted from the root of Scutellaria baicalensis in mice and rats," Pharmaceutical Biology, vol. 44, no. 7, pp. 503-510, 2008.

[108] M. J. Detke, M. Rickels, and I. Lucki, "Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants," Psychopharmacology, vol. 121, no. 1, pp. 66-72, 1995.

[109] L. T. Yi, H. L. Xu, J. Feng, X. Zhan, L. P. Zhou, and C. C. Cui, "Involvement of monoaminergic systems in the antidepressant-like effect of nobiletin," Physiology Behavior, vol. 102, no. 1, p. 1, 2011.

[110] R. Lozano-Hernandez, J. F. Rodriguez-Landa, J. D. Hernandez-Figueroa, M. Saavedra, F. R. Ramos-Morales, and J. S. Cruz-Sanchez, "Antidepressant-like effects of two commercially available products of Hypericum perforatum in the forced swim test: A long-term study," Journal of Medicinal Plants Research, vol. 4, no. 2, pp. 131-137, 2010.

[111] J. F. Rodriguez-Landa, J. Cueto-Escobedo, J. D. Aguirre-Chinas, and M. O. Perez-Vazquez, "A commercially available product of Hypericum perforatum acts on GABAA receptor to produces anxiolytic-like, but not antidepressant-like effects in Wistar rats," in Hypericum: Botanical Sources, Medical Properties, and Health Effects, H. R. Davis, Ed., Davis, Nova Publishers, New York, NY, USA, 2015.

[112] E. A. Apaydin, A. R. Maher, R. Shanman et al., "A systematic review of St. John's wort for major depressive disorder," Systematic Reviews, vol. 5, no. 1, article no. 148, 2016.

[113] J. F. Rodriguez-Landa and C. M. Contreras, "A review of clinical and experimental observations about antidepressant actions and side effects produced by Hypericum perforatum extracts," Phytomedicine, vol. 10, no. 8, pp. 688-699, 2003.

[114] N. Karim, I. Khan, N. Ahmad, M. N. Umar, and N. Gavande, "Antidepressant, anticonvulsant and antinociceptive effects of 3'-methoxy-6-methylflavone and 3'-hydroxy-6-methylflavone may involve GABAergic mechanisms," Pharmacological Reports, vol. 69, no. 5, pp. 1014-1020, 2017.

[115] M. Anjaneyulu, K. Chopra, and I. Kaur, "Antidepressant Activity of Quercetin, A Bioflavonoid, in Streptozotocin-Induced Diabetic Mice," Journal of Medicinal Food, vol. 6, no. 4, pp. 391395, 2003.

[116] Q.-Q. Mao, Z. Huang, X.-M. Zhong, Y.-F. Xian, and S.-P. Ip, "Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice," Behavioural Brain Research, vol. 261, pp. 140-145, 2014.

[117] A. D. Basterzi, K. Yazici, E. Aslan et al., "Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 33, no. 2, pp. 281-285, 2009.

[118] C. B. Filho, C. R. Jesse, F. Donato et al., "Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice," European Journal of Pharmacology, vol. 791, pp. 284-296, 2016.

[119] S. Kumar, A. Mishra, and A. K. Pandey, "Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models," BMC Complementary and Alternative Medicine, vol. 13, article 120, 2013.

[120] G. Li, P. Jing, Z. Liu et al., "Beneficial effect of fluoxetine treatment aganist psychological stress is mediated by increasing BDNF expression in selected brain areas," Oncotarget, vol. 8, no. 41, pp. 69527-69537, 2017.

[121] T. Rantamaki, P. Hendolin, A. Kankaanpaa et al., "Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-C[gamma] signaling pathways in mouse brain," Neuropsychopharmacology, vol. 32, no. 10, pp. 2152-2162, 2007.

[122] K. Hashimoto, "Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions," Psychiatry and Clinical Neurosciences, vol. 64, no. 4, pp. 341-357, 2010.

[123] K. Hashimoto, "Role of the mTOR signaling pathway in the rapid antidepressant action of ketamine," Expert Review of Neurotherapeutics, vol. 11, no. 1, pp. 33-36, 2011.

[124] R. S. Duman and G. K. Aghajanian, "Synaptic dysfunction in depression: potential therapeutic targets," Science, vol. 338, no. 6103, pp. 68-72, 2012.

Leon Jesus German-Ponciano, (1) Gilberto Uriel Rosas-Sanchez, (1) Eduardo Rivadeneyra-Dominguez, (2) and Juan Francisco Rodriguez-Landa (iD)(2,3)

(1) Programa de Doctorado en Neuroetologia, Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, VER, Mexico

(2) Facultad de Quimica Farmaceutica Biologica, Universidad Veracruzana, Xalapa, VER, Mexico

(3) Laboratorio de Neurofarmacologia, Instituto de Neuroetologia, Universidad Veracruzana, Xalapa, VER, Mexico

Correspondence should be addressed to Juan Francisco Rodriguez-Landa; juarodriguez@uv.mx

Received 25 August 2017; Revised 11 December 2017; Accepted 24 December 2017; Published 1 February 2018

Academic Editor: Marie-Aleth Lacaille-Dubois

Caption: Figure 1: Basic structure of flavonoids and the system of numeration. A and B are phenyls, and C corresponds to pyrene. Numbers indicate the numeration system of the basic structure of flavonoids.

Caption: Figure 2: General classification and basic structure of flavonoids.
Table 1: Plants with antidepressant-like effects associated with
their total flavonoids content.

                          Doses       Duration of     Behavioral
Plant (family)           (animal)       treatment         test

Alpinia oxyphylla       10 mg/kg,        14 days        FST, SPT
Miq.                     p.o. (A)
(Zingiberaceae)

Hemerocallis             400 mg/       Single dose        TST
citrina L.               kg, p.o.
(Xanthorrhoeaceae)         (B)

                         10, 20,         35 days          SPT
                        and 40 mg/
                         kg, p.o.
                           (C)

Apocynum venetum         0.35 mM/      Single dose      FST, TST
Linn.                    kg, i.p.
(Apocynaceae)              (B)

Hibiscus                 500 and       Single dose      FST, TST
esculentus L.            750 mg/
(Malvaceae)              kg, i.p.
                           (D)

Apocynum venetum        50 and 100       10 days        FST, TST
L. (Apocynaceae)          mg/kg,
                         p.o. (E)

Glycyrrhiza              30,100,         28 days        FST, TST
uralensis Fisch.       and 300 mg/
(Fabaceae)               kg, p.o.
                           (F)

Byrsonima                500 mg/       Single dose        FST
crassifolia (L.)         kg, p.o.
Kunth                      (E)
(Malpighiaceae)

Cecropia                50 mg/kg,        8 days           FST
pachystachya             p.o. (G)
Trecul
(Urticaceae)

Chrysactinia            1, 5, 10,      Single dose        FST
mexicana A. Gray         100, and
(Asteraceae)             200 mg/
                         kg, p.o.
                           (H)

Opuntia ficus-          30 mg/kg,        14 days        FST, TST
indica (L.) Mill.        p.o. (E)
(Cactaceae)

Hibiscus rosa-          30 and 100     Single dose      FST, TST
sinensis Linn.            mg/kg,
(Malvaceae)              p.o. (C)

Actaea spicata L.        200 mg/       Single dose        FST
(Ranunculaceae)          kg, p.o.
                           (I)

Clerodendrum            25 and 50        7 days         FST, TST
serratum Linn.          mg/kg, p.a
(Verbenaceae)

Plant (family)         Reference

Alpinia oxyphylla         [13]
Miq.
(Zingiberaceae)

Hemerocallis              [14]
citrina L.
(Xanthorrhoeaceae)

                          [15]

Apocynum venetum          [16]
Linn.
(Apocynaceae)

Hibiscus                  [17]
esculentus L.
(Malvaceae)

Apocynum venetum          [18]
L. (Apocynaceae)

Glycyrrhiza             [19, 20]
uralensis Fisch.
(Fabaceae)

Byrsonima                 [21]
crassifolia (L.)
Kunth
(Malpighiaceae)

Cecropia                  [22]
pachystachya
Trecul
(Urticaceae)

Chrysactinia              [23]
mexicana A. Gray
(Asteraceae)

Opuntia ficus-            [24]
indica (L.) Mill.
(Cactaceae)

Hibiscus rosa-            [25]
sinensis Linn.
(Malvaceae)

Actaea spicata L.         [26]
(Ranunculaceae)

Clerodendrum              [27]
serratum Linn.
(Verbenaceae)

(A) Male Kunming mice; (B) male mice; (C) male Sprague-Dawley rats;
(D) male Swiss albino mice; (E) male ICR mice; (F) rats; (G) male
Wistar rats; (H) male Swiss Webster mice; (I) male LACA mice. FST:
forced swim test; TST: tail suspension test; SPT: sucrose
preference test.

Table 2: Neurobiological effects produced by some flavonoids.

                                               Treatment
Flavonoid                 Doses                 duration

Naringenin          5, 10, and 20 mg/           21 days
                            kg

                    5, 10, and 20 mg/           14 days
                            kg

Luteolin                 10 mg/kg            30 min before
                                                  test

                         50 mg/kg               23 days

Icariin                  60 mg/kg               21 days

Hesperidin           0.01, 0.1, 0.3,            21 days
                       and 1 mg/kg

                         50 mg/kg               13 days

Astilbin            10, 20, and 40 mg/          21 days
                            kg

                    10, 20, and 40 mg/          14 days
                            kg

Baicalein             1 and 4 mg/kg         Single injection
                                               or 21 days

Chrysin               5 and 20 mg/kg            28 days

                      5 and 20 mg/kg            14 days

Fisetin             5, 10, and 20 mg/      60 min before test
                            kg

                         5 mg/kg                14 days

Orientin             20 and 40 mg/kg            21 days

7,8-Dihy-           1, 3, and 10 mg/kg     60 min before test
droxyflavone

Icariin              20 and 40 mg/kg            35 days

Dihydro-             10 and 20 mg/kg             7 days
myricetin

Silymarin           100 and 200 mg/kg           14 days

Myricitrin               10 mg/kg               21 days

Myricetin                50 mg/kg               21 days

3,5,6,7,             50 and 100 mg/kg           15 days
8,3',4'-
Heptametho-
xyflavone

Apigenin             20 and 40 mg/kg            21 days

Miquelianin             0.6 mg/kg               14 days

Isoquer-                0.6 mg/kg              14-56 days
citrin

Liquiritin and           20 mg/kg            30 min before
isoliquiritin                                    sample

Flavonoid                 Doses           Effects

Naringenin          5, 10, and 20 mg/     Increase in BDNF
                            kg            concentrations in
                                          the hippocampus in
                                          male mice

                    5, 10, and 20 mg/     Increase in 5-HT,
                            kg            DA, and NE in the
                                          hippocampus in
                                          male ICR mice

Luteolin                 10 mg/kg         Increases in
                                          chloride ion flow
                                          at the [GABA.sub.A]
                                          receptor in male
                                          rats

                         50 mg/kg         Attenuation of the
                                          expression of
                                          endoplasmic
                                          reticulum stress-
                                          related proteins
                                          in the hippocampus
                                          in male ICR mice

Icariin                  60 mg/kg         Increases in BDNF
                                          concentrations in
                                          the hippocampus in
                                          male rats

Hesperidin           0.01, 0.1, 0.3,      Increase in BDNF
                       and 1 mg/kg        concentrations in
                                          the hippocampus in
                                          male mice

                         50 mg/kg         Increase in BDNF
                                          and NGF
                                          concentrations in
                                          the hippocampus in
                                          male C57BL/6 mice

Astilbin            10, 20, and 40 mg/    Increase in BDNF
                            kg            concentrations in
                                          the cerebral
                                          cortex in male
                                          mice, similar to
                                          imipramine

                    10, 20, and 40 mg/    Increase in
                            kg            dopamine and BDNF
                                          concentrations in
                                          the hippocampus in
                                          male rats

Baicalein             1 and 4 mg/kg       Restoring of the
                                          reduction of
                                          extracellular
                                          signal-regulated
                                          kinase
                                          phosphorylation
                                          and BDNF
                                          expression in the
                                          hippocampus of
                                          male Kunming mice
                                          subjected to CUMS

Chrysin               5 and 20 mg/kg      Increase in BDNF
                                          concentrations in
                                          the hippocampus
                                          and prefrontal
                                          cortex in female
                                          mice

                      5 and 20 mg/kg      Increase in 5/HT
                                          and BDNF
                                          concentrations in
                                          the hippocampus in
                                          male C57B/6J mice

Fisetin             5, 10, and 20 mg/     Activation of the
                            kg            serotonergic
                                          system, apparently
                                          through
                                          inactivation of
                                          MAO-A enzyme in
                                          male mice

                         5 mg/kg          Increases in
                                          phosphorylated
                                          TrkB (pTrkB) in
                                          the hippocampus in
                                          male ICR mice

Orientin             20 and 40 mg/kg      Increase in BDNF,
                                          serotonin, and
                                          norepinephrine
                                          concentrations in
                                          the hippocampus
                                          and prefrontal
                                          cortex in male
                                          mice

7,8-Dihy-           1, 3, and 10 mg/kg    Increase in BDNF
droxyflavone                              concentrations in
                                          the hippocampus
                                          and prefrontal
                                          cortex in male
                                          mice

Icariin              20 and 40 mg/kg      Decrease in
                                          oxidative stress
                                          and
                                          neuroinflammation
                                          in the hippocampus
                                          in male rats

Dihydro-             10 and 20 mg/kg      Increase in mRNA
myricetin                                 for BDNF in the
                                          hippocampus in
                                          male C57BL/6 mice

Silymarin           100 and 200 mg/kg     Increase in 5-HT,
                                          DA, NE, and BDNF
                                          concentration in
                                          the hippocampus
                                          and cerebral
                                          cortex, similar to
                                          fluoxetine in
                                          adult Wistar rats

Myricitrin               10 mg/kg         Increases in cell
                                          proliferation in
                                          the subgranular
                                          zone of the
                                          hippocampal
                                          dentate gyrus in
                                          male BALB/c mice

Myricetin                50 mg/kg         Increases in BDNF
                                          concentrations in
                                          the hippocampus in
                                          male C57BL/6 mice

3,5,6,7,             50 and 100 mg/kg     Increase in BDNF
8,3',4'-                                  concentration,
Heptametho-                               neurogenesis, and
xyflavone                                 neuroplasticity in
                                          the hippocampus in
                                          male C57BL/6 mice

Apigenin             20 and 40 mg/kg      Increase in BDNF
                                          concentrations in
                                          the hippocampus in
                                          male ICR mice

Miquelianin             0.6 mg/kg         Modulation of the
                                          hypothalamic-
                                          pituitary-adrenal
                                          axis by reducing
                                          plasma
                                          concentration of
                                          ACTH and
                                          corticosterone in
                                          male CD rats

Isoquer-                0.6 mg/kg         Modulation of the
citrin                                    hypothalamic-
                                          pituitary-adrenal
                                          axis by reducing
                                          plasma
                                          concentration of
                                          ACTH and
                                          corticosterone in
                                          male CD rats

Liquiritin and           20 mg/kg         Increases in 5-HT
isoliquiritin                             and NE
                                          concentrations in
                                          the hippocampus,
                                          hypothalamus, and
                                          cortex in mice

Flavonoid                 Doses           Reference

Naringenin          5, 10, and 20 mg/        [28]
                            kg

                    5, 10, and 20 mg/        [29]
                            kg

Luteolin                 10 mg/kg            [30]

                         50 mg/kg            [31]

Icariin                  60 mg/kg            [32]

Hesperidin           0.01, 0.1, 0.3,         [9]
                       and 1 mg/kg

                         50 mg/kg            [33]

Astilbin            10, 20, and 40 mg/       [34]
                            kg

                    10, 20, and 40 mg/       [35]
                            kg

Baicalein             1 and 4 mg/kg          [36]

Chrysin               5 and 20 mg/kg         [10]

                      5 and 20 mg/kg         [37]

Fisetin             5, 10, and 20 mg/        [38]
                            kg

                         5 mg/kg             [39]

Orientin             20 and 40 mg/kg         [40]

7,8-Dihy-           1, 3, and 10 mg/kg       [41]
droxyflavone

Icariin              20 and 40 mg/kg         [42]

Dihydro-             10 and 20 mg/kg         [43]
myricetin

Silymarin           100 and 200 mg/kg        [44]

Myricitrin               10 mg/kg            [45]

Myricetin                50 mg/kg            [46]

3,5,6,7,             50 and 100 mg/kg      [47, 48]
8,3',4'-
Heptametho-
xyflavone

Apigenin             20 and 40 mg/kg         [49]

Miquelianin             0.6 mg/kg            [50]

Isoquer-                0.6 mg/kg            [50]
citrin

Liquiritin and           20 mg/kg            [51]
isoliquiritin

BDNF: brain-derived neurotrophic factor; NGF: nerve growth factor;
MAO-A: monoamine oxidase type A; TrkB: tropomyosin receptor kinase
B; 5-HT: serotonin; DA: dopamine; NE: norepinephrine; ACTH:
adrenocorticotropic hormone.

Table 3: Effect of flavonoids on depression-like behavior
at preclinical research.

Model of          Flavonoid (animal)           Doses
depression

Forced swim         Naringenin (A)       10, 20, and 50 mg/
test (1)                                      kg, p.o.

                     Luteolin (A)          10 mg/kg, p.o.

                                           50 mg/kg, p.o.

                     Icariin (B)           60 mg/kg, p.o.

                                          20 and 40 mg/kg,
                                                p.o.

                     Astilbin (C)        10, 20, and 40 mg/
                                              kg, i.p.

                    Baicalein (B)        10, 20, and 40 mg/
                                              kg, i.p.

                    Baicalein (F)         1, 2, and 4 mg/
                                              kg, i.p.

                    Kaempferol (A)         30 mg/kg, p.o.

                    Quercitrin (A)         30 mg/kg, p.o.

                     Vitexin (D)         10, 20, and 30 mg/
                                              kg, p.o.

                     Chrysin (J)          5 and 20 mg/kg,
                                                p.o.

                     Fisetin (A)         5, 10, and 20 mg/
                                              kg, p.o.

                    Quercetin (E)        50 and 100 mg/kg,
                                                i.p.

                                          40 and 80 mg/kg,
                                                p.o.

                    Quercetin (I)          50 mg/kg, i.p.

                    Quercetin (L)         25 and 50mg/kg,
                                                p.o.

                     Orientin (F)         20 and 40 mg/kg,
                                                p.o.

                    7,8-Dihydroxy-        1, 3, and 10 mg/
                     flavone (G)              kg, i.p.

                   Isosakuranetin-        15 and 30 mg/kg,
                  5-O-rutinoside (A)            p.o.

                    Liquiritin (K)       10, 20, and 40 mg/
                                              kg, p.o.

                  Isoliquiritin (K)      10, 20, and 40 mg/
                                              kg, p.o.

                     Naringin (E)        50 and 100 mg/kg,
                                                i.p.

Tail suspen-        Naringenin (A)       10, 20, and 50 mg/
sion test (1)                                 kg, p.o.

                                         5, 10, and 20 mg/
                                              kg, p.o.

                    Hesperidin (H)        0.1, 0.3, and 1
                                            mg/kg, i.p.

                     Astilbin (G)        10, 20, and 40 mg/
                                              kg, i.p.

                     Vitexin (D)         10, 20, and 30 mg/
                                              kg, p.o.

                     Fisetin (A)         5, 10, and 20 mg/
                                              kg, p.o.

                     Orientin (F)         20 and 40 mg/kg,
                                                p.o.

                    7,8-Dihydroxy-        3 and 10 mg/kg,
                     flavone (G)                i.p.

                    Baicalein (F)         1, 2, and 4 mg/
                                              kg, i.p.

                    Kaempferol (A)         30 mg/kg, p.o.

                    Quercitrin (A)         30 mg/kg, p.o.

                    Liquiritin (K)       10, 20, and 40 mg/
                                              kg, p.o.

                  Isoliquiritin (K)      10, 20, and 40 mg/
                                              kg, p.o.

CUMS-sucrose        Naringenin (A)        10 and 20 mg/kg,
intake (2)                                      p.o.

                     Icariin (B)           60 mg/kg, p.o.

                                          20 and 40 mg/kg,
                                                p.o.

                     Astilbin (C)        10, 20, and 40 mg/
                                              kg, i.p.

                     Chrysin (J)          5 and 20 mg/kg,
                                                p.o.

                     Orientin (F)         20 and 40 mg/kg,
                                                p.o.

                     Apigenin (A)         7 and 14 mg/kg,
                                                p.o.

                     7,8-Dihydro-         10 and 20 mg/kg,
                    xyflavone (G)               i.p.

                     Icariin (B)          20 and 40 mg/kg,
                                                p.o.

Model of                Doses            Treatment duration
depression

Forced swim       10, 20, and 50 mg/     60 min before test
test (1)               kg, p.o.

                    10 mg/kg, p.o.       30 min before test

                    50 mg/kg, p.o.            23 days

                    60 mg/kg, p.o.            21 days

                   20 and 40 mg/kg,           35 days
                         p.o.

                  10, 20, and 40 mg/          21 days
                       kg, i.p.

                  10, 20, and 40 mg/          14 days
                       kg, i.p.

                   1, 2, and 4 mg/        Single injection
                       kg, i.p.              or 21 days

                    30 mg/kg, p.o.            14 days

                    30 mg/kg, p.o.            14 days

                  10, 20, and 30 mg/     60 min before test
                       kg, p.o.

                   5 and 20 mg/kg,            28 days
                         p.o.

                  5, 10, and 20 mg/      60 min before test
                       kg, p.o.

                  50 and 100 mg/kg,           21 days
                         i.p.

                   40 and 80 mg/kg,           14 days
                         p.o.

                    50 mg/kg, i.p.            21 days

                   25 and 50mg/kg,            14 days
                         p.o.

                   20 and 40 mg/kg,           21 days
                         p.o.

                   1, 3, and 10 mg/      60 min before test
                       kg, i.p.

                   15 and 30 mg/kg,       21, 18, and 1 h
                         p.o.               before test

                  10, 20, and 40 mg/     30 min before test
                       kg, p.o.

                  10, 20, and 40 mg/     30 min before test
                       kg, p.o.

                  50 and 100 mg/kg,           14 days
                         i.p.

Tail suspen-      10, 20, and 50 mg/     60 min before test
sion test (1)          kg, p.o.

                  5, 10, and 20 mg/           14 days
                       kg, p.o.

                   0.1, 0.3, and 1            21 days
                     mg/kg, i.p.

                  10, 20, and 40 mg/          21 days
                       kg, i.p.

                  10, 20, and 30 mg/     60 min before test
                       kg, p.o.

                  5, 10, and 20 mg/      60 min before test
                       kg, p.o.

                   20 and 40 mg/kg,           21 days
                         p.o.

                   3 and 10 mg/kg,       60 min before test
                         i.p.

                   1, 2, and 4 mg/        Single injection
                       kg, i.p.              or 21 days

                    30 mg/kg, p.o.            14 days

                    30 mg/kg, p.o.            14 days

                  10, 20, and 40 mg/     30 min before test
                       kg, p.o.

                  10, 20, and 40 mg/     30 min before test
                       kg, p.o.

CUMS-sucrose       10 and 20 mg/kg,           21 days
intake (2)               p.o.

                    60 mg/kg, p.o.            21 days

                   20 and 40 mg/kg,           35 days
                         p.o.

                  10, 20, and 40 mg/          21 days
                       kg, i.p.

                   5 and 20 mg/kg,            28 days
                         p.o.

                   20 and 40 mg/kg,           21 days
                         p.o.

                   7 and 14 mg/kg,            49 days
                         p.o.

                   10 and 20 mg/kg,           28 days
                         i.p.

                   20 and 40 mg/kg,           35 days
                         p.o.

Model of                Doses               Effect        Reference
depression

Forced swim       10, 20, and 50 mg/       No effect         [52]
test (1)               kg, p.o.

                    10 mg/kg, p.o.      Antidepressant       [30]

                    50 mg/kg, p.o.      Antidepressant       [31]

                    60 mg/kg, p.o.      Antidepressant       [32]

                   20 and 40 mg/kg,     Antidepressant       [42]
                         p.o.

                  10, 20, and 40 mg/    Antidepressant       [34]
                       kg, i.p.

                  10, 20, and 40 mg/    Antidepressant       [35]
                       kg, i.p.

                   1, 2, and 4 mg/      Antidepressant       [36]
                       kg, i.p.

                    30 mg/kg, p.o.      Antidepressant       [24]

                    30 mg/kg, p.o.      Antidepressant       [24]

                  10, 20, and 30 mg/    Antidepressant       [53]
                       kg, p.o.

                   5 and 20 mg/kg,      Antidepressant       [10]
                         p.o.

                  5, 10, and 20 mg/     Antidepressant       [38]
                       kg, p.o.

                  50 and 100 mg/kg,     Antidepressant       [54]
                         i.p.

                   40 and 80 mg/kg,     Antidepressant       [55]
                         p.o.

                    50 mg/kg, i.p.      Antidepressant       [54]

                   25 and 50mg/kg,      Antidepressant       [56]
                         p.o.

                   20 and 40 mg/kg,     Antidepressant       [40]
                         p.o.

                   1, 3, and 10 mg/     Antidepressant       [41]
                       kg, i.p.

                   15 and 30 mg/kg,     Antidepressant       [57]
                         p.o.

                  10, 20, and 40 mg/    Antidepressant       [51]
                       kg, p.o.

                  10, 20, and 40 mg/    Antidepressant       [51]
                       kg, p.o.

                  50 and 100 mg/kg,     Antidepressant       [58]
                         i.p.

Tail suspen-      10, 20, and 50 mg/    Antidepressant       [52]
sion test (1)          kg, p.o.

                  5, 10, and 20 mg/     Antidepressant       [29]
                       kg, p.o.

                   0.1, 0.3, and 1      Antidepressant       [9]
                     mg/kg, i.p.

                  10, 20, and 40 mg/    Antidepressant       [34]
                       kg, i.p.

                  10, 20, and 30 mg/    Antidepressant       [53]
                       kg, p.o.

                  5, 10, and 20 mg/     Antidepressant       [38]
                       kg, p.o.

                   20 and 40 mg/kg,     Antidepressant       [40]
                         p.o.

                   3 and 10 mg/kg,      Antidepressant       [41]
                         i.p.

                   1, 2, and 4 mg/      Antidepressant       [36]
                       kg, i.p.

                    30 mg/kg, p.o.      Antidepressant       [24]

                    30 mg/kg, p.o.      Antidepressant       [24]

                  10, 20, and 40 mg/    Antidepressant       [51]
                       kg, p.o.

                  10, 20, and 40 mg/    Antidepressant       [51]
                       kg, p.o.

CUMS-sucrose       10 and 20 mg/kg,     Antidepressant       [28]
intake (2)               p.o.

                    60 mg/kg, p.o.      Antidepressant       [32]

                   20 and 40 mg/kg,     Antidepressant       [42]
                         p.o.

                  10, 20, and 40 mg/    Antidepressant       [34]
                       kg, i.p.

                   5 and 20 mg/kg,      Antidepressant       [10]
                         p.o.

                   20 and 40 mg/kg,     Antidepressant       [40]
                         p.o.

                   7 and 14 mg/kg,      Antidepressant       [59]
                         p.o.

                   10 and 20 mg/kg,     Antidepressant       [60]
                         i.p.

                   20 and 40 mg/kg,     Antidepressant       [61]
                         p.o.

(1) The antidepressant-like effect is suggested by the reduction in
immobility time without significant changes in the general
locomotor activity. (2) The antidepressant-like effect is suggested
by the increase in sucrose intake. CUMS: chronic unpredictable mild
stress. (A) Adult male ICR mice. (B) Male Sprague-Dawley rats. (C)
Male C57BL/6J mice. (D) Adult male BALB/c mice. (E) Adult male
Wistar rats. (F) Adult male Kunming mice. (G) Adult male C57BL/6
mice. (H) Adult male Swiss mice. (I) Male 21-day
streptozotocin-induced diabetic Wistar rats. (J) Female C57BL/6J
mice. (K) Mice sex and strain were not identified. (L) Female Swiss
mice.
COPYRIGHT 2018 Hindawi Limited
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:German-Ponciano, Leon Jesus; Rosas-Sanchez, Gilberto Uriel; Rivadeneyra-Dominguez, Eduardo; Rodrigue
Publication:Scientifica
Date:Jan 1, 2018
Words:11958
Previous Article:Histological Study of Induced Incisions on Rabbits' Tongues with Three Diode Lasers with Different Wavelengths in Continuous Mode.
Next Article:Socioeconomic Characteristics Influencing Level of Awareness of Aflatoxin Contamination of Feeds among Livestock Farmers in Meru District of Tanzania.
Topics:

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters