Printer Friendly

Achieve Life Sciences announces publication of cytisine data in Chem.

Achieve Life Sciences announced that cytisine data, generated in collaboration with the University of Bristol, was published in Chem. These data show that via the use of C-H activation chemistry, the cytisine molecule can be modified in a highly targeted and selective manner to generate a new class of cytisine derivatives that may enable future development of product candidate both for smoking cessation and other indications. The University of Bristol strategic collaboration uses a combination of computational docking and chemical synthesis to design and generate precision chemical keys for important biological locks. Nicotinic acetylcholine receptors, or nAChR, associated with acetylcholine-mediated neurotransmission have been linked to several neurological conditions and public health issues, notably tobacco addiction. The ability to design and synthesize a molecule specifically to achieve high levels of selectivity across a family of receptor subtypes is paramount for therapeutic success as poor selectivity for a particular target can be accompanied by off-target adverse effects. Molecular simulation of protein-ligand complexes was also used to understand how structural modifications might modify a ligand's activity profile. This contributes to a fundamental understanding of the mechanism of action of nAChRs but importantly also facilitates the design of accurate 'molecular keys' for better selectivity at these receptor subtypes. This, in turn, offers the potential of more precisely targeted therapies. The collaboration has modified the molecular structure of cytisine, an established nAChR partial agonist, to eliminate activation of the a7 nAChR while retaining a critical partial agonist profile at the high affinity nicotine receptor, the a4b2 nAChR subtype. "While we believe cytisine offers an advantage over existing smoking cessation treatments, we appreciate that even low level activation of nicotinic receptor subtypes, particularly a7 nAChR, may occur and can lead to undesirable side effects," said Dr. Anthony Clarke, President & Chief Scientific Officer of Achieve. "This effort led by the University of Bristol will enable Achieve to pursue the development of next-generation cytisine treatments, which will be highly-targeted and more potent. This offers the prospect of greater efficacy and better tolerability for newer anti-smoking medications and also the possibility of nicotinic receptor-based treatments for other indications, such as alcohol addiction and potentially opioid addiction."

COPYRIGHT 2018 The Fly
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:The Fly
Date:Jun 11, 2018
Previous Article:Rent-A-Center issues statement regarding acquisition offer.
Next Article:Vical says Phase 2 trial of HSV-2 therapeutic vaccine did not meet endpoint.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters