Printer Friendly

A unique tripled common fixed point theorem for four mappings in partial metric spaces.

Received: January 15, 2013. Revised: May 21, 2013.

2000 Mathematics Subject Classification: 54H25, 47H10, 54E50.

REFERENCES

[1] T. Abdeljawad, E. Karapinar and K. Tas: Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett., 24(2011), No. 11, 1894-1899.

[2] I. Altun, F. Sola and H. Simsek: Generalized contractions on partial metric spaces, Topology Appl., 157(2010), No. 18, 2778-2785.

[3] I. Altun and A. Erduran: Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., Vol. 2011, Article ID 508730, 10 pages.

[4] H. Aydi: Some coupled fixed point results on partial metric spaces, Internat. J. Math. Math. Sci., Vol. 2011, Article ID 647091, 11 pages.

[5] H. Aydi: Fixed point results for weakly contractive mappings in ordered partial metric spaces, J. Adv. Math. Stud., 4(2011), No. 2, 1-12.

[6] H. Aydi, E. Karapinar and M. Postolache: Tripled coincidence point theorems for weak [phi]-contractions in partially ordered metric spaces, Fixed Point Theory Appl., Vol. 2012, Article ID 2012:44, 12 pages.

[7] V.Berinde and M.Borcut: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74(2011), No. 15, 4889-4897.

[8] T. G. Bhaskarand V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.

[9] Lj. Ciric, B. Samet, H. Aydi and C. Vetro: Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218(2011), 2398-2406.

[10] R. Heckmann: Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct., 7(1999), No. 1-2, 71-83.

[11] D. Ilic, V. Pavlovicand V. Rakocevk:: Some new extensions of Banach's contraction principle to partial metric spaces, Appl. Math. Lett., 24(2011), No. 8, 1326-1330.

[12] E. Karapinar and I. M. Erhan: Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24(2011), No. 11, 1900-1904.

[13] E. Karapinar: Weak [phi]-contraction on partial contraction, J. Comput. Anal. Appl. (in press).

[14] E. Karapinar: Weak [phi]-contraction on partial contraction and existence of fixed points in partially ordered sets, Mathematica Aeterna, 1(2011), No. 4, 237-244.

[15] E. Karapinar: Generalizations of Caristi Kirk's theorem on partial metric spaces, Fixed Point Theory Appl., Vol. 2011, Article ID 2011:4.

[16] R. Kopperman, S. G. Matthews and H. Pajoohesh: What do partial metrics represent?, Spatial representation: discrete vs. continuous computational models, Dagstuhl Seminar Proceedings, No. 04351, Internationales Begegnungs- und Forschungszentrum fur Informatik (IBFI), Schloss Dagstuhl, Germany, (2005).

[17] H.P.A. Kunzi, H. Pajoohesh and M. P. Schellekens: Partial quasi-metrics, Theoret. Comput. Sci., 365(2006), No. 3, 237-246.

[18] V. Lakshmikantham and Lj. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(2009), 4341-4349.

[19] S. G. Matthews: Partial metric topology, Research Report 212. Dept. of Computer Science. University of Warwick, 1992.

[20] S. G. Matthews: Partial metric topology, in Proceedings of the 8th Summer Conference on General Topology and Applications, vol. 728, pp. 183-197, Annals of the New York Academy of Sciences, 1994.

[21] S. Oltra and O. Valero: Banach's fixed point theorem for partial metric spaces, Rendiconti dell'Istituto di Matematica dell'Universitadi Trieste., 36(2004), No. 1-2, 17-26.

[22] S. J. ONeill: Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, http://www.dcs.warwick.ac.uk/reports/283.html, (1995).

[23] K.P.R. Rao and G.N.V. Kishore: A unique common fixed point theorem for four maps under ip-<fi contractive condition in partial metric spaces, Bull. Math. Anal. Appl., 3(2011), No. 3, 56-63.

[24] K.P.R. Rao and G.N.V. Kishore: A unique common triple fixed point theorem in partially ordered cone metric spaces, Bull. Math. Anal. Appl., 3(2011), No. 4, 213-222.

[25] K.P.R. Rao, G.N.V. Kishore and N.Srinivasa Rao: A unique common 3--tupled fixed point theorem for [psi]-[phi] contractions in partial metric spaces, Mathematica Aeterna, 1(2011), No. 7, 491-507.

[26] S. Romaguera and M. Schellekens: Weightable quasi-metric semigroup and semilattices, Electronic Notes Theor. Comput. Sci., Proceedings of MFCSIT, 40, Elsevier, (2003).

[27] S. Romaguera: A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Vol. 2010, Article ID 493298, 6 pages.

[28] M. Schellekens: The Smyth completion: a common foundation for denotational semantics and complexity analysis, Electronic Notes Theor. Comput. Sci., 1(1995), 535-556.

[29] M. P. Schellekens: A characterization of partial metrizability: domains are quantifiable, Theor. Comput. Sci., 305(2003), No. 1-3, 409-432.

[30] O. Valero: On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6(2005), No. 2, 229-240.

[31] P. Waszkiewicz: Quantitative continuous domains, Appl. Categ. Struct., 11(2003), No. 1, 41-67.

[32] P. Waszkiewicz: Partial metrizebility of continuous posets, Math. Struct. Comput Sci., 16(2006), No. 2, 359-372.

Acharya Nagarjuna University

Department of Mathematics

Nagarjuna Nagar, Guntur--522510, Andhra Pradesh, India

E-mail address: kprrao2004@yahoo.com

Baba Institute of Technology and Sciences

Department of Mathematics

P. M. Palem, Madhurawada--530048, Visakhapatnam District, Andhra Pradesh, India

E-mail address: kishore.apr2@gmail.com

Aligarh Muslim University

Department of Mathematics

Aligarh-202002, U.P.

E-mail address: mhimdad@yahoo.co.in
COPYRIGHT 2013 Fair Partners Team for the Promotion of Science
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Rao, K.P.R.; Kishore, G.N.V.; Imdad, M.
Publication:Journal of Advanced Mathematical Studies
Article Type:Author abstract
Geographic Code:9INDI
Date:Jul 1, 2013
Words:863
Previous Article:Geometry of warped product submanifolds: a survey.
Next Article:Mixed quasi bifunction variational inequalities.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters