Printer Friendly

A simple method to compare the sensitivity of different AE sensors for tank floor testing.


This paper addresses the needs of AE testers of atmospheric storage tanks of various sizes, who want to compare the sensitivity of different sensor models or sensors of same model using a simple method. The most important standards for AE sensor calibration are ISO 12713 (primary calibration) [1] and ISO 12714 (secondary calibration) [2]. Both standards are designed for calibration laboratories. They require a large and heavy calibration block. AE testers usually do not have access to such a calibration block. Additionally, ISO 12714 is recommended for the frequency range 100 kHz - 1 MHz, whereas tank testing is usually done in the frequency range 25-45 kHz. Hence, these standards are of no help for the AE tester. Other standards like EN 13477 [3] and ASTM E976 [4] are general and do not consider the fact that plate waves propagate in different modes.

To detect smallest AE signals, the sensor should have the largest possible signal-to-noise ratio (SNR). This means that for a certain excitation the sensor shall provide the largest possible signal voltage superposed with the smallest possible inherent noise.

For a sensitivity comparison one has to proceed as follows:

1. Excite both sensors in identical manner (frequency sweep) and strongly enough so that the noise can be neglected against the signal from the excitation. The output signal shall be [U.sub.A](f).

2. Measure the inherent noise of the sensors (no excitation!). This is the output voltage [U.sub.R].

3. The SNR at given excitation is then: SNR(f) = [U.sub.A](f)/[U.sub.R]. It might be of interest to calculate a SNR for peak values and one for RMS values.

4. The frequency response as well as the noise measurement shall be made with the same frequency filters as used for the tank test.

5. The sensor with the higher SNR can distinguish smaller excitations from the background noise. Hence, this is the more sensitive sensor.


For the comparison the following setup was used:

Function Generator (FG)

The function generator creates a sine wave voltage with adjustable frequency and amplitude or a pulse with selectable duration and amplitude, respectively. In our test we used model 33220A (Agilent).

Sensor Excitation

For a comparison, the sensors under test (SUT) need to be excited acoustically in exactly the same way. As emitter an ultrasonic transducer model V101 (Panametrics) was coupled face to face to one SUT using light machine oil as coupling agent. The emitter was driven by a frequency-swept sine wave and the AE signal amplitude from SUT was measured.

This method provides well reproducible results and is well suited for routine sensor verification. But the following objections could be raised:

a) AE tank-floor testing analyzes burst AE and not continuous (sine wave) AE. A comparison should also consider burst excitation.

b) Different SUT models could have different feedback on the V101 emitter and thereby tamper the comparison result.

Considering these objections, a second comparison was made using a pulse excitation via an aluminum rod of 610-mm length and 19-mm diameter with polished ends. Both excitation methods led to almost the same results for the frequency range 25-45 kHz.

Compared Sensor Models

We compared a Vallen VS30-SIC-46dB sensor (S/N 120) with another sensor, hereafter called XXX. Both sensors have an integral preamplifier requiring 28V DC supply voltage on the signal wire and 20.6 mm diameter. The following lists the differences.
Model           Length   Face                       Connector

VS30-SIC-46dB   52.8mm   isolated ceramic plate     BNC at case
XXX             38.8mm   non-isolated metal plate   BNC with 1 m cable

Measurement Chain with Various Filters

For measurements we used Vallen AMSY-5 AE system with dual-channel AE processor ASIP-2, a 25-45 kHz band-pass for the first test, and a 25-100 kHz band-pass for a second test. These band-pass filters consist of digital high- and low-pass filters each with 48 dB/octave steepness. Figure 1 shows the response curves of the band-pass at 1 [V.sub.PP] continuous sine wave at ASIP-2 input. Frequency sweep and RMS measurement were controlled by Vallen Sensor Tester software.

Sensor Frequency Response

To obtain Figs. 2 and 3, the FG output (50 m[V.sub.pp], terminated externally with 50Q) was connected to the V101, face-to-face with SUT. The red curves were taken with 25-45 kHz filter and the blue curves with 25-100 kHz filter in ASIp-2. For the determination of the inherent noise of the SUT, we removed the acoustic excitation by disconnecting the V101 from the FG. We amplified the sensor output with an auxiliary amplifier by 40 dB, which allowed one to ignore the noise added by subsequent measurement stages. In this way the horizontal lines in orange (25-45 kHz) and green (25-100 kHz) were recorded.


During this noise measurement, we ensured that no acoustic noise sources like fans, human voices, or others could cause a distortion within the frequency range under evaluation. Both SUT were treated in exactly the same way.



The results are summarized in Table 1. They were deduced from the 4 lines of Figs. 2 and 3, whereby the noise has been corrected by the 40 dB post-amplification. As can be seen from noise and maximum amplitude, the gain of the integral preamplifier of XXX is lower than that of the VS30-SIC-46dB, but the deciding factor is the SNR as this is independent of the gain. Results for continuous excitation and 25-45 kHz filter: VS30-SIC-46dB provides 17 dB more signal amplitude and 9.5 dB better SNR.

Using Burst Excitation

For XXX the exciting pulse amplitude was 5 [V.sub.p]. For VS30-SIC-46dB the amplitude was reduced to 1 [V.sub.p] because 5 [V.sub.p] led to saturation due to the larger gain. Figure 4 shows the response of the VS30-SIC-46dB with 1-VP excitation amplitude at V101, and Fig. 5 shows the response of XXX with 5 [V.sub.p] at V101, both with 25-45 kHz filter. For the FFT, a 190-[micro]s long Hamming window was used. Table 2 lists the maximum amplitude in the time domain (line 2), converted to dB (line 3), the maximum amplitude in the frequency domain (line 4). To compensate for the 5-Vp excitation of XXX, its line-2 value is divided by 5 (600/5 = 120 mV) and line 4 is reduced by 14 dB (97-14 = 83 dB). Table 2 also lists the noise in mVP (line 5) and converted to dB (line 6). The noise values were recorded separately, in reference to the SUT output (before 40-dB amplification) and are maximum values (peaks), which occurred in a frequency of 1/s or less. The resulting signal-noise-ratios are listed in line 7 (time domain) and line 8 (frequency domain). Scaling in Figs. 4-7 refers to the input voltage at the AE signal processor (ASIP-2).


Figures 6 and 7 were taken with band-pass of 25-300 kHz. Figure 6 shows at approximately 30 [micro]s the arrival of the [s.sub.1] mode, which travels with ~4000 m/s at 250 kHz according to Fig. 8. Considerable differences between the two sensor models are seen: VS30-SIC-46dB exhibits a resonance at ~60 kHz, where XXX exhibits resonances at 40 and 80 kHz and an anti-resonance at 60 kHz. Due to the obscure influence of the s1 mode, a direct comparison of Figs. 6 and 7 is not recommended.



Result for burst excitation with 25-45 kHz filter: Table 2, line 3 indicates that VS30 delivers 17.8 dB more amplitude and line 8 shows 8.6 dB more SNR in time domain and 7.8 dB more in frequency domain. This result is very similar to continuous excitation.



Noise Spectra, Impedance and "Natural Frequency"

The frequency, at which a sensor shows a sudden jump in its impedance, is called natural frequency [6]. For obtaining an impedance curve (Figs. 9 and 10), a passive sensor must be used. A sine wave of 100 m[V.sub.PP] from a function generator in series with 10 pF was fed in parallel to a sensor VS30-V (same piezo-element as VS30-SIC-46dB) connected to a preamplifier AEP4 (40 dB). Figure 9 shows the lowest impedance at 51 kHz, and the highest at 58 kHz. Peculiar with this frequency is, that the amplitude measured with sensor connected (Fig. 9: 94 dB) is higher than measured with the sensor disconnected (89 dB)! The impedance combination of both, sensor and preamplifier, generate a sharp resonance peak.



This peak can also be seen in the noise spectrum (Fig. 11) of a sensor with integrated preamplifier. This dominating peak in the noise spectrum is the reason for the increase of inherent noise when using the 25-100 kHz band-pass filter instead of 25-45 kHz. In both Figs. 9 and 11, further peaks at 112 kHz, 175 kHz and 270 kHz can be identified. XXX has its dominating peak in the noise spectrum below 25 kHz (Fig. 12). This explains why the noise of the XXX does not substantially increase with a 25-100 kHz band-pass filter.

The determination of a reproducible noise spectrum requires averaging the FFT over many measurements as the individual spectra of noise records scatter considerably. For Figs. 11 and 12, we averaged 1000 noise records using the Vallen FFT-Averager. The absolute scaling of Figs. 11 and 12 must not be compared. These figures shall just illustrate the different 'natural frequencies' and the effect of filter bandwidth on the noise of the filtered signal.




This report describes two setups to compare the sensitivity of different sensor models. One is with face-to-face coupling and continuous excitation, and the other with burst excitation via an aluminum rod. In both cases, the excitation is perpendicular to the sensitive area. When looking at the SNR (signal-to-noise ratio), the inherent noise and the noise spectra have to be considered. Two sensor models have been compared. The result depends strongly on the used frequency range. For 25-45 kHz and identical excitation, one sensor model provides 17 dB more signal and about 9 dB better SNR than the other. For tank floor testing, the frequency range of 25-45 kHz is suited best. The more sensitive sensor model shows a natural frequency of 60 kHz. This causes a peak in the noise spectrum, which is excluded effectively by the 25-45 kHz band-pass filter.


[1] Non-destructive testing - Acoustic emission inspection - Primary calibration of transducers, ISO 12713, ISO/TC135, 1998.

[2] Non-destructive testing - Acoustic emission inspection - Secondary calibration of acoustic emission sensors, ISO 12714, ISO/TC135, 1999.

[3] Non-destructive testing - Acoustic emission - Equipment characterisation- Part 2: Verification of operating characteristics, EN13477-2, CEN/TC138, 2001.

[4] Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response, ASTM E976 ASTM/E07.04, 2001.

[5] J.L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, ISBN 0 521 54889 6, 2004, p. 149+.

[6] G. Gautschi, Piezoelectric Sensorics, Springer Verlag, ISBN 3-540-42259-5, 2002, p. 195+.


Vallen-Systeme GmbH, 82057 Icking, Germany
Table 1 Results for continuous sensor excitation.

Sensor:                                     VS30-SIC-46dB

Filter [kHz]:                          25-45       25-100
Maximum amplitude (RMS): line color:   87 dB red   90.5 dB blue
Frequency at max. ampl.:               35 kHz      53 kHz
RMS noise:                             10 dB       20 dB
line color:                            orange      green
Signal-to-noise ratio SNR:             77 dB       70.5 dB
Difference wrt. XXX at 25-45 kHz:      9.5 dB      3 dB

Sensor:                                         XXX

Filter [kHz]:                          25-45       25-100
Maximum amplitude (RMS): line color:   70 dB red   72 dB blue
Frequency at max. ampl.:               35 kHz      78 kHz
RMS noise:                             2.5 dB      5 dB
line color:                            orange      green
Signal-to-noise ratio SNR:             67.5 dB     67 dB
Difference wrt. XXX at 25-45 kHz:      0 dB        -0.5 dB

Table 2 Burst excitation results with 25-45 kHz filter.

Line   Sensor:                            VS30-SIC -46dB    XXX

2      max. Amplitude [m[V.sub.P]]:            940         600/5V
3      max. Amplitude [dB]:                   119.4        101.6
4      max. Amp(FFT) [dB]:                     100         97-14
5      max. Noise [m[V.sub.P]]:                0.58         0.2
6      max. Noise [dB]:                        55.2          46
7      SNR (m[V.sub.P]) (3-6) in [dB]:         64.2         55.6
8      SNR (FFT) (4-6) in [dB]:                44.8         37.0
COPYRIGHT 2007 Acoustic Emission Group
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Vallen, Hartmut; Vallen, Jochen; Forker, Jens
Publication:Journal of Acoustic Emission
Article Type:Report
Geographic Code:4EUGE
Date:Jan 1, 2007
Previous Article:Immersion-type quadridirectional optical fiber AE sensor for liquid-borne AE.
Next Article:Damage in carbon fibre composites: the discrimination of acoustic emission signals using frequency.

Terms of use | Privacy policy | Copyright © 2019 Farlex, Inc. | Feedback | For webmasters