Printer Friendly

A practical quantum simulator: simulating molecular vibrations with photons.

Funded Value:1,026,524

Funded Period:Nov 15 - Oct 20

Funder:EPSRC

Project Status:Active

Project Category:Fellowship

Project Reference:EP/N003470/1

Computer simulations of physical models have become a vital tool in science and engineering. For example, the aerodynamics and chassis integrity for a new car design will be fully simulated on a computerised model, long before production begins, while biologists will use a simplified computer model to simulate the dynamics involved in protein folding. In both of these cases, the physics underlying the model to be simulated is that of the familiar, classical world, as is the information that is processed. In contrast, chemists working with systems at the microscopic scale (quantum chemists) must incorporate quantum physics into their physical models. But these models come up against the intractability of simulating even modestly sized quantum systems on classical computers.

The number of possible configurations of any system grows exponentially with its degrees of freedom, just like the number of heads/tails configurations of a row of coins doubles with each additional coin. Since a quantum system can exist simultaneously across all of its configurations, its evolution is too large to be simulated with a classical computer. Therefore, quantum mechanical models for classical computers are necessarily limited while more compete models are fundamentally intractable to classical simulation. Yet increasingly, scientists need to understand the role of quantum physics, for example in biological molecules.

The famous physicist and Nobel Laureate, Richard Feynman, identified this problem in a seminal lecture in 1982. He also proposed a solution. Feynman suggested using one controllable quantum system to simulate the model for the quantum system one wishes to study. The ultimate realisation of this ingenious concept is a digital quantum simulator that theoretically can be programmed to simulate any quantum system. Building this device is the focus of an increasingly intensive international effort, or competition. This effort is likely to be long term since isolating, digitising, and coherently controlling large quantum systems has proved to be highly challenging, due to their inclination to couple to the environment, decohere, and behave classically. After all, the world we see around us is classical, not quantum. Therefore, the road to a quantum simulator that surpasses the capabilities of classical computers seems, long and difficult, and is an ultimate goal to scientists working in quantum information science.

Project completion date : 2020-10-31 12:00:00

Major organization : UNIVERSITY OF BRISTOL

Address : Senate House,

Tyndall Ave,

Bristol BS8 1TH

Country :United Kingdom

[c] 2018 Al Bawaba (Albawaba.com) Provided by SyndiGate Media Inc. ( Syndigate.info ).

COPYRIGHT 2018 SyndiGate Media Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2018 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Mena Report
Date:Nov 16, 2018
Words:427
Previous Article:In vitro synaptic networks for basic science and drug discovery.
Next Article:I-4 Ultimate Improvement Project.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters