Printer Friendly

A community-driven intervention in Tuftonboro, New Hampshire, succeeds in altering water testing behavior.

Introduction

Approximately one-sixth of U.S. households obtain drinking water from a private well (Kenny et al., 2009). In New Hampshire, more than 40% of the population obtains household water from an unregulated well (Figure 1) (Kenny et al., 2009). Under the Safe Drinking Water Act (SDWA), the U.S. Environmental Protection Agency (U.S. EPA) regulates public drinking water supplies by establishing maximum contaminant levels (MCLs) and delegating enforcement to states and tribes to ensure water systems conform with the MCLs (Levine, 2012; Tiemann, 2010). The SDWA defines a contaminant as "any physical, chemical, biological, or radiological substance or matter in water." Private well water is not tested for compliance with MCLs unless it (1) provides piped water for human consumption to at least 15 service connections (community water systems) or (2) regularly serves at least 25 of the same people for 60 days a year (non-transient, non-community water systems) (Tiemann, 2010; U.S. Environmental Protection Agency [U.S. EPA], 2012a). Therefore, households with wells are responsible for regular water testing to detect contaminants and for applying treatment when necessary.

Potential Human Health Effects of Drinking Water From Private Wells

Untreated water from private wells can be a source of unsafe levels of contaminants (Table 1) (Charrios, 2010; Committee on Environmental Health & Committee on Infectious Diseases [CEHCID], 2009; Walker, Shaw, & Benson, 2006). Ingestion of contaminated water can cause both acute and chronic illness and certain contaminants are particularly hazardous to fetuses, infants, and children (Brender et al., 2013; CEHCID, 2009; Dangleben, Skibola, & Smith, 2013; Farzan, Karagas, & Chen, 2013; Hexemer et al., 2008; Hilborn et al., 2013; Naujokas et al., 2013; Rahman et al., 2010; Reynolds, Mena, & Gerba, 2008; Smith & Steinmaus, 2009). Bacteria, viruses, and parasites cause gastrointestinal illnesses; contaminants, such as radon, arsenic, chromium, and trichloroethyl ene are carcinogenic; and studies associate consumption of nitrates with a host of health effects and abnormal fetal development (Ward et al., 2005). Few studies have explored complex mixtures of contaminants and their additive or synergistic effects on health (Ryker & Small, 2008).

In New Hampshire wells, several contaminants are found at levels of concern, including arsenic, radon, and uranium. Low levels of arsenic are likely in nearly 40% of New Hampshire's groundwater (Figure 2) (Ayotte, Cahillaine, Hayes, & Robinson, 2012). Public health officials estimate that approximately one in five New Hampshire wells has arsenic in excess of the U.S. EPA MCL of 0.01 mg/L (Montgomery, Ayotte, Carroll, & Hamlin, 2003). Arsenic is a concern due to both its status as a class 1 carcinogen (Anders et al., 2004) and its place atop of the 2011 Priority List of Hazardous Substances published by the Agency for Toxic Substances and Disease Registry, which is a ranking of substances based on a combination of their frequency, toxicity, and potential for human exposure at Superfund sites (Agency for Toxic Substances and Disease Registry, 2011). The major concern of ingesting inorganic arsenic is cancer, but dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident (Hughes, Beck, Chen, Lewis, & Thomas, 2011; Martinez, Vucic, Becker-Santos, Gil, & Lam, 2011; Naujokas et al., 2013; Nuckols et al., 2011; Parvez et al., 2013; Rahman et al., 2010). Evidence is growing that links prenatal and early-life exposure to arsenic with long-term health implications (Farzan et al, 2013) and deleterious effects on the immune system (Dangleben et al., 2013).

Radon is also commonly present in New Hampshire well water. Approximately 50%-60% of all private drilled wells in New Hampshire produce water with radon concentrations between 300 and 4,000 picocuries per liter (pCi/L) (New Hampshire Department of Environmental Services, 2009). Although the ingestion risk of radon is smaller than the risk associated with inhalation, drinking water with radon increases the risk of developing stomach cancer (Catelinois et al., 2006; Hopke et al., 2000). Of the estimated 168 cancer deaths per year due to radon in drinking water, 11% of the deaths are from stomach cancer caused by ingestion (National Research Council, 1999; U.S. EPA, 2012b). Furthermore, radon in water vaporizes during normal usage and contributes to the overall level of radon in indoor air (Collman, Loomis, & Sandler, 1991).

A small number of New Hampshire wells contain uranium above the U.S. EPA MCL (0.03 mg/L). Possible biological effects of drinking uranium above 0.03 mg/L over a long period include vitamin D and iron homeostasis, bone volume decrease and healing interference, and adverse effects on the kidneys (Canu, Laurent, Pires, Laurier, & Dublineau, 2011). Lower levels of uranium in drinking water have also been associated with high blood pressure (Frisbie, Mitchell, & Sarkar, 2013).

Communicating With Households About Private Wells

Encouraging citizens to monitor their homes is a formidable task (Doyle et al., 1990) and studies indicate that a significant proportion of households are unaware of the need for regular water quality testing (Novokowski, Beatty, Conboy, & Lebedin, 2006). For example, in a rural area of Canada, only 8% of survey respondents had tested their well water at a frequency that met the recommended testing schedule and 20% of households that had tested did not know which tests were performed (Jones et al., 2006). Another study in two rural U.S. counties found that a quarter of respondents with wells had never thought about taking precautions to limit their children's exposure to contaminants, and only one-third of respondents had ever previously tested their water (Postma, Butterfield, Odom-Maryon, Hill, & Butterfield, 2011). At least one study concluded that education, income, age, and homeowner status are all significantly associated with water testing rates (Jones et al., 2005). Treatment rates are also low; a survey in a rural county in Nevada where the media reported extensively about arsenic in drinking water found that only 38% of residents applied treatment (Walker et al., 2006).

Hazard perception is another challenge. No time pressure exists to complete the testing and treatment process and certain contaminants found in well water possess characteristics that lead people to accept the risks associated with drinking well water (Covello, 2008). People may dismiss the risks associated with drinking water because of the following risk characteristics, which have also been identified as reasons people fail to address radon in indoor air (Doyle et al., 1990):

1. The objective probability of the health risk is often below the level at which people understand and respond appropriately;

2. Often no perceptual cues or reminders exist to alert people to the presence of the risk (e.g., arsenic is colorless, odorless, and tasteless in water);

3. Contaminants in well water are often of geological origin, so no villain exists to whom the household can easily assign blame or responsibility;

4. People's experience with the risk is generally benign in the sense that many have lived in their homes years without experiencing any easily attributable health effect;

5. The effect of the risk is far removed from the initial exposure (e.g., arsenic-induced cancer takes many years to develop);

6. Deaths due to contaminant consumption are not dramatic, occur singly, and are impossible to unequivocally relate to consumption; and

7. The risk is not the same for everyone but varies in complex ways depending on several dimensions (e.g., location, soil type, well structure).

Additional commonly reported obstacles to water testing and treatment rates include inconvenience, economic costs, inability to interpret test results, and uncertainty over the reliability of treatment companies or performance of systems (Jones et al., 2006; Kreutzwiser, de Loe, & Imgrund, 2010; Kreutzwiser et al., 2011; Montgomery et al., 2003). Self-installation treatment systems are available, but they have startup and maintenance costs, require skills to install, and are typically contaminant specific. Finally, water quality information and test results contain complex terms, labels, and numbers with various confounding units; thus, we suspect that health literacy levels are also an understudied contributor to low treatment rates. Health literacy is "the degree to which individuals have the capacity to obtain, process, and understand basic health information ... needed to make appropriate health decisions (Ratzan & Parker, 2000)," and it refers to "... understanding and using information to make health decisions (Peerson & Saunders, 2009)." It includes the ability to use quantitative information (Berkman, Davis, & McCormack, 2010). Almost 9 out of 10 U.S. adults have difficulty applying everyday health information (Kutner, Greenberg, Jin, & Paulsen, 2006).

Recent research suggests public health officials must design interventions and materials to address these barriers. In Waterloo, Canada, removing the barriers of cost and inconvenience approximately doubled the background testing rate (Hexemer et al., 2008). A thorough analysis identified complacency and inconvenience as the most significant barriers and confirmed that household knowledge and better information alone were weak bases for predicting higher testing rates (Imgrund, Kreutzwiser, & de Loe, 2011).

Community-Level Interventions and Behavior Change

Community-based participatory research and other forms of community-engaged research encourage involvement of communities in the formation of research and solutions (Brown et al., 2012; O'Fallon & Dearry, 2002). Researchers and communities increasingly report that partnership-driven, community-level interventions are successful in promoting healthy behaviors (Brown et al., 2012; Downs et al., 2010). Partnership-driven efforts build social capital, empower households, and help develop locally appropriate management strategies (Arnold & Fernandez-Gimenez, 2007; Berkes, 2009; Downs et al., 2010). Findings suggest target populations may ignore messages when community leaders do not sufficiently participate in the design of interventions; thus, communication may not clarify the public health hazard and has the potential to expand the gap between perceived and actual risk. High levels of public disinterest and apathy have been reported in many "technocratic" approaches (Covello, 2008; Doyle et al., 1991; Slovic, 1987).

Participatory testing and reporting refers to an approach that enables community members to participate in meaningful and empowering ways in the testing activity and reporting of results (Downs et al., 2010). The work described here was "participatory" in that 1) a local group of volunteers consulted an academic research program and state agency to conceive, design, and implement a water testing program; and 2) the volunteers led an effort to report the results to local leaders and the community with support from the other partners.

Methods

Partnership to Increase Well Water Testing Rates in Tuftonboro, New Hampshire

In 2012, the Tuftonboro Conservation Commission (TCC) initiated an effort to inform local residents about the potential health effects of well water. TCC began by inviting the Dartmouth Toxic Metals Superfund Research Program (DTMSRP) to present to the Tuftonboro Selectboard (Figure 3). A member of DTMSRP presented information about the health effects of contaminants in well water and provided information about protective actions. The selectboard responded with support for an informational campaign. TCC subsequently planned a well water testing service for residents in order to make testing accessible and reduce its overall inconvenience.

Table 2 outlines the timeline of the water testing campaign in 2012. In short, TCC contacted the New Hampshire Department of Health and Human Services Public Health Laboratory (NH DHHS Lab) to obtain water testing kits for distribution to residents. TCC disseminated and publicized information about well water and notified the community about dates TCC would distribute testing kits. After collecting samples, forms, and money, a volunteer delivered the time-sensitive samples to the NH DHHS Lab, which was a 70-minute drive (140 minutes round trip). The volunteer ensured correct transfer of test forms and samples, and TCC coordinated the delivery of results to residents. Residents were provided the option to choose a basic analysis, a standard analysis, a radiological analysis, or individual contaminants. Results were sub sequently delivered to residents, and personally identifiable information was removed so the collective results could be presented to the selectboard by a member of DTMSRP Finally, TCC organized a well water forum in collaboration with the New Hampshire Department of Environmental Services (NH DES) to answer residents' questions about results and treatment. In total, TCC estimated it spent more than 100 man-hours organizing the campaign in 2012. TCC repeated the process in 2013.

FIGURE 3

Partners Involved in a Pilot Project to Increase Well
Testing Rates in Tuftonboro, New Hampshire

Partnership to increase well testing rates

NH Department of
Environmental Services (NH DES)

* Organized an annual conference that
included discussions about private
well water

* Provided fact sheets and public
education on private wells and local
contaminants of concern

* Provided information to the public
on water treatment options

* Sent experts to a follow-up public
forum to discuss test results and
treatment options

Tuftonboro Conservation
Commission (TCC)

* Informed local selectboard

* Coordinated local effort to inform citizens
through news articles and a mailing that
accompanied the local tax bill

* Distributed test kits to citizens

* Drove citizens' samples to the NH DHHS
Lab for analysis

* Organized a public forum with the NH
DES to discuss results and learn about
water treatment

Dartmouth Toxic Metals
Superfund Research Program
(DTMSRP)

* Presented information at the annual NH DES
Drinking Water Source Protection Conference
on the health effects of chronic exposure to
low doses of arsenic

* Coordinated with the TCC to present
information to the selectboard on arsenic, local
contaminants of concern, and options to
reduce exposure

* Presented the collective well water testing
results to the Tuftonboro Selectboard

NH Department of Health
and Human Services Public
Health Laboratory (NH DHHS Lab)

* Provided test kits for water analysis

* Provided guidance on taking
samples and maintaining integrity
of samples


Community and Partners Involved

TCC

TCC is composed of four year-round volunteer residents. Conservation commissions are composed of volunteers who work to study and protect local natural resources. Three members planned and carried out the water testing events, extending the mission of TCC to protect residents from the consequences of contaminants in well water. Tuftonboro is located in Carroll County, New Hampshire. Carroll County has fewer than 50,000 people and Tuftonboro has approximately 2,500, with the number of residents markedly increasing during the summer months. Tuftonboro is a summer vacation spot on the north shore of Lake Winnipesaukee, with a marina and many lakeside homes and rental cottages.

DTMSRP

DTMSRP is a research program funded by the National Institute of Environmental Health Sciences. A focus of the program is to investigate the health effects of arsenic in well water, and informing residents about arsenic in well water has been a priority of DTMSRP since its inception. The Research Translation and Community Engagement Cores maintain a Web site with frequently asked questions and water testing information. The Research Translation Core created a 10-minute movie, In Small Doses: Arsenic, about arsenic in wells. The cores frequently organize public events to promote water testing, and they have a prominent role in the coordination of the New Hampshire Arsenic Consortium, which is an annual meeting of regional professionals to share information on arsenic in well water.

NH DES

NH DES produces drinking water fact sheets, provides technical assistance about testing and treatment to residents, and conducts outreach to promote testing and treatment. Private well installation and related construction standards are administered by the New Hampshire Water Well Board. The board along with NH DES is primarily responsible for licensing well and pump contractors, maintaining well construction records, and adopting and enforcing standards for the construction of wells and the installation of pumps. NH DES recommends private well users test their water annually for bacteria and nitrates, and every three to five years for a suite of other contaminants. The agency also maintains a list of accredited labs that provide services locally.

NH DHHS Lab

The NH DHHS Lab provides analytical testing services of water, wastes, hazardous materials, soils, and other chemical matrices for all state agencies and citizens. The NH DHHS Lab's mission is to meet clients' needs and requirements, comply with all applicable quality assurance and quality control objectives, and comply with current applicable government standards and regulations. Its policy is to assist clients in understanding and interpreting the relevance of their test results by providing educational material and personal communication.

Results

In total, TCC collected and delivered 285 water samples to the NH DHHS Lab in July 2012 and July 2013 (Figure 4), which was more than triple the number of water samples tested at the same lab in the previous six years (the NH DHHS Lab tested just 83 water samples from Tuftonboro from 2006 to 2012). After the first sample collection event in 2012, the TCC delivered 122 water samples in July and then 37 other samples prompted by follow-up publicity and a Well Water Forum led by NH DES. In 2013, TCC collected and delivered a total of 163 water samples after the sample collection event and then 27 in the following months. Alarmingly, 28% of water samples exceeded the arsenic MCL and 23% were positive for total coliform bacteria. Of the 79 samples that underwent a radiological analysis, 24 water samples (34%) had greater than 2,000 pCi/L of radon, which is the NH DES recommended action level. The combined results are summarized in Table 3.

Discussion

We consider the participatory water testing program designed and implemented by TCC to be successful. The program raised awareness about the potential hazards of well water among local community leaders and empowered many residents to test their water. The reporting of results also sprouted other community-led testing initiatives in New Hampshire. Elements that contributed to the success of the program included the following:

* Targeted messages. TCC used local media to significantly raise public awareness, and the efforts to promote the water testing service were well timed.

* Support from the town selectboard. TCC worked together with the town selectboard, keeping the town leaders informed about its actions, and the selectboard supported the TCC's testing service by providing reimbursement to the TCC member who transported the water samples to the NH DHHS Lab. Members of TCC attended selectboard meetings each month to report on progress leading up to the events. The meeting minutes are published and read by town residents.

* Persistence. TCC volunteered a substantial amount of time over the course of two years to plan, inform citizens, and hold events.

* Dedicated and compassionate volunteers. Informed members of TCC provided individual assistance to residents on what tests to select, how to draw the samples, and what payment to make.

The actions of TCC addressed factors that have previously been found to influence testing behavior. First, TCC likely changed local attitudes through a public information campaign focused on providing facts and stories about local residents who were dealing with contamination. The publicity may have boosted household knowledge and altered a common misperception that unsafe water must taste or smell abnormally. Second, TCC learned that the inconvenience of water testing may be an important structural constraint, especially in rural regions. TCC made water testing more accessible for people by distributing test kits, driving samples to the lab, and reducing the overall effort needed to obtain and interpret results. This reinforces previous findings that merely providing the public with information is not sufficient to ensure that decisions are consistent with the actual level of risk (Imgrund et al., 2011; Madajewicz et al., 2007; Walker, Shaw, & Benson, 2006).

The overall effectiveness of the program in reducing exposure is difficult to evaluate because we did not measure the rate of treatment and did not formally follow up with households about whether they acted on the test results. This limits our ability to analyze how people interpreted water test results and whether the information they received was actionable. Future programs should contain a mechanism to measure treatment rates, since water testing alone does not reduce exposure to contaminated water. Comments from TCC emphasized the need for clear and simple instructions with test kits and the need for water test results to highlight elevated levels of particular contaminants. We are also unable to definitively state that the water testing program increased the background water testing rate in Tuftonboro because private laboratories in New Hampshire do not release data on the number of samples tested at their facilities. It is possible a significant number of people used private lab services, which could mean 1) more people tested prior to the efforts of TCC, or 2) the number of water tests prompted by the TCC is higher, which would result in a smaller or larger increase of the background water testing rate, respectively.

Conclusion

Water from private wells is largely unmonitored and private well users are often unaware of the potential presence of contaminants. In the absence of protective laws, convincing households to follow recommended testing schedules is necessary to protect public health. Participatory programs that reduce the barriers to testing and treatment can help certain communities increase the likelihood of protective behaviors. The pilot program described here was successful in raising local awareness and prompting residents to test their water. Further programs and research should explore the other testing and treatment constraints.

Michael P. Paul, MPH, JD

Toxic Metals Superfund Research Program The Audrey and Theodor Geisel School of Medicine at Dartmouth

Pierce Rigrod, MRP

New Hampshire Department of Environmental Services

Steve Wingate

Tuftonboro Conservation Commission

Mark E. Borsuk, PhD

Thayer School of Engineering Dartmouth College

Acknowledgements: DTMSRP is supported by funds from National Institute of Health Grant Number P42ES07373. The authors are solely responsible for this content; it does not represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health.

Corresponding Author: Mark E. Borsuk, Associate Professor of Engineering, Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755-8000. E-mail: mark.borsuk@darmouth.edu.

References

Agency for Toxic Substances and Disease Registry. (2011). The ATSDR 2011 substance priority list. Retrieved from http://www.atsdr.cdc.gov/spl/

Anders, W.M., Bull, R.J., Cantor, K.P., Chakraborti, D., Chen, C., DeAngelo, A.B., DeMarini, D.M., Ferreccio, C., Fukushima, S., Gebel, T.W., Mazumder, D.N., Karagas, M.R., Kogevinas, M., Komulainen, H., Le Curieux, F., Meharg, A., Ng, J.C., Nieuwenhuijsen, M.J., Olin, S., Pereira, M., Rahman, M., Roberson, J.A., & the Working Group on the Evaluation of Carcinogenic Risks to Humans. (2004). Some drinking-water disinfectants and contaminats, including arsenic (Vol. 84). Geneva: World Health Organization.

Arnold, J.S., & Fernandez-Gimenez, M. (2007). Building social capital through participatory research: An analysis of collaboration on Tohono O'odham tribal rangelands in Arizona. Society and Natural Resources: An International Journal, 20(6), 481-495.

Ayotte, J.D., Cahillaine, M., Hayes, L., & Robinson, K.W. (2012). Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011. Retrieved from http://pubs.usgs.gov/sir/2012/5156/

Berkes, F. (2009). Evolution of co-management: Role of knowledge generation, bridging organizations, and social learning. Journal of Environmental Management, 90(5), 1692-1702.

Berkman, N.D., Davis, T.C., & McCormack, L. (2010). Health literacy: What is it? Journal of Health Communication: International Perspectives, 15(Suppl. 2), 9-19.

Brender, J.D., Weyer, PJ., Romitti, PA., Mohanty, B.P, Shinde, M.U., Vuong, A.M., Sharkey, J.R., Dwivedi, D., Horel, S.A., Kantamneni, J., Huber, J.C., Jr., Zheng, Q., Werler, M.M., Kelley, K.E., Griesenbeck, J.S., Zhan, F.B., Langlois, P.H., Suarez, L., Canfield, M.A., & the National Birth Defects Prevention Study. (2013). Prenatal nitrate intake from drinking water and selected birth defects in offspring of participants in the national birth defects prevention study. Environmental Health Perspectives, 121(9), 1083-1089.

Brown, P., Brody, J.G., Morello-Frosch, R., Tovar, J., Zota, A.R., & Rudel, R.A. (2012). Measuring the success of community science: The northern California household exposure study. Environmental Health Perspectives, 120(3), 326-331.

Canu, I.G., Laurent, O., Pires, N., Laurier, D., & Dublineau, I. (2011). Health effects of naturally radioactive water ingestion: The need for enhanced studies. Environmental Health Perspectives, 119(12), 1676-1680.

Catelinois, O., Rogel, A., Laurier, D., Billon, S., Herman, D., Verger, P., & Tirmarche, M. (2006). Lung cancer attributed to indoor radon exposure in France: Impact of the risk models and uncertainty analysis. Environmental Health Perspectives, 114(9), 1361-1366.

Charrios, J.W.A. (2010). Private drinking water supplies: Challenges for public health. Canadian Medical Association Journal, 182(10), 1061-1064.

Collman, G.W., Loomis, D.P., & Sandler, D.P. (1991). Childhood cancer mortality and radon concentrations in drinking water in North Carolina. British Journal of Cancer, 63(4), 626-629.

Committee on Environmental Health, & Committee on Infectious Diseases. (2009). Technical report: Drinking water from private wells and risks to children. Pediatrics, 123(6), e1123-e1137.

Covello, V.T. (2008). Risk communication: Principles, tools, and techniques. Global Health Technical Briefs. Retrieved from http://www.popline.org/node/201150

Dangleben, N.L., Skibola, C.F., & Smith, M.T. (2013). Arsenic immunotoxicity: A review. Environmental Health, 12(73), 1-15.

Downs, T.J., Ross, L., Mucciarone, D., Calvache, M.-C., Taylor, O., & Goble, R. (2010). Participatory testing and reporting in an environmental-justice community of Worcester, Massachusetts: A pilot project. Environmental Health, 9(34).

Doyle, J.K., McClelland, G.H., Schulze, W.D., Elliott, S.R., & Russell, G.W. (1991). Protective responses to household risk: A case study of radon mitigation. Risk Analysis, 11(1), 121-134.

Doyle, J.K., McClelland, G.H., Schulze, W.D., Locke, PA., Elliott, S.R., Russell, G.W., & Moyad, A. (1990). An evaluation of strategies for promoting effective radon mitigation. Risk Communication and Economic Research Series. Washington, DC: U.S. Environmental Protection Agency.

Farzan, S.F, Karagas, M.R., & Chen, Y. (2013). In utero and early life arsenic exposure in relation to long-term health and disease. Toxicology and Applied Pharmacology, 272(2), 384-390.

Frisbie, S.H., Mitchell, E.J., & Sarkar, B. (2013). World health organization increases its drinking-water guideline for uranium. Environmental Science: Processes & Impacts, 15(10), 1817-1823.

Hexemer, A.M., Pintar, K., Bird, T.M., Zentner, S.E., Garcia, H.P., & Pollari, F. (2008). An investigation of bacteriological and chemical water quality and the barriers to private well water sampling in a southwestern Ontario community. Journal of Water and Health, 6(4), 521-525.

Hilborn, E.D., Wade, T.J., Hicks, L., Garrison, L., Carpenter, J., Adam, E., Mull, B., Yoder, J.S., Roberts, V.A., & Gargano, J.W. (2013). Surveillance for waterborne disease outbreaks associated with drinking water and other nonrecreational water--United States, 2009-2010. Morbidity and Mortality Weekly Report, 62(35), 714-720.

Hopke, P.K., Borak, T.B., Doull, J., Cleaver, J.E., Eckerman, K.F., Gundersen, L.C.S., Harley, N.H., Hess, C.T., Kinner, N.E., Kopecky, K.J., McKone, T.E., Sextro, R.G., & Simon, S.L. (2000). Health risks due to radon in drinking water. Environmental Science & Technology, 34(6), 921-926.

Hughes, M.F., Beck, B.D., Chen, Y., Lewis, A.S., & Thomas, D.J. (2011). Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences, 123(2), 305-332.

Imgrund, K., Kreutzwiser, R., & de Loe, R. (2011). Influences on the water testing behaviors of private well owners. Journal of Water and Health, 9(2), 241-252.

Jones, A.Q., Dewey, C.E., Dore, K., Majowicz, S.E., McEwen, S.A., David, W.-T., Eric, M., Carr, D.J., & Henson, S.J. (2006). Public perceptions of drinking water: A postal survey of residents with private water supplies. BMC Public Health, 6(94), 1-11.

Jones, A.Q., Dewey, C.E., Dore, K., Majowicz, S.E., McEwen, S.A., Waltner-Toews, D., Henson, S.J., & Mathews, E. (2005). Public perception of drinking water from private water supplies: Focus group analyses. BMC Public Health, 5(129).

Kenny, J.F, Barber, N.L., Hutson, S.S., Linsey, K.S., Lovelace, J.K., & Maupin, M.A. (2009). Estimated use of water in the United States in 2005. Washington, DC: U.S. Geological Survey.

Kreutzwiser, R., de Loe, R., & Imgrund, K. (2010). Out of sight, out of mind: Private well stewardship in Ontario. Waterloo, ON: Water Policy and Governance Group, University of Waterloo.

Kreutzwiser, R., de Loe, R., Imgrund, K., Conboy, M.J., Simpson, H., & Plummer, R. (2011). Understanding stewardship behavior: Factors facilitating and constraining private water well stewardship. Journal of Environmental Management, 92(4), 1104-1114.

Kutner, M., Greenberg, E., Jin, Y., & Paulsen, C. (2006). The health literacy of America's adults: Results from the 2003 national assessment of adult literacy. Washington, DC: U.S. Department of Education.

Levine, R.L. (2012). The need for congressional action to finance arsenic reductions in drinking water. Journal of Environmental Health, 75(4), 20-25.

Madajewicz, M., Pfaff, A., van Green, A., Graziano, J., Hussein, I., Momotaj, H., Sylvi, R., & Ahsan, H. (2007). Can information alone change behavior? Response to arsenic contamination of groundwater in Bangladesh. Journal of Development Economics, 84(2), 731-754.

Martinez, V.D., Vucic, E.A., Becker-Santos, D.D., Gil, L., & Lam, WL. (2011). Arsenic exposure and the induction of human cancers. Journal of Toxicology, 2011, 1-13.

Montgomery, D.L., Ayotte, J.D., Carroll, P.R., & Hamlin, P (2003). Arsenic concentrations in private bedrock wells in southeastern New Hampshire (USGS Fact Sheet 051-03). U.S. Geological Survey. Retrieved from http://pubs.usgs.gov/fs/fs-051-03/

National Research Council. (1999). Health effects of exposure to radon: Beir VI. Washington, DC: National Academies Press.

Naujokas, M.F, Anderson, B., Ahsan, H., Aposhian, H.V., Graziano, J.H., Thompson, C., & Suk, W.A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295-302.

New Hampshire Department of Environmental Services. (2009). Radon in air and water: An overview for the homeowner. Retrieved from http://des.nh.gov/organization/commissioner/pip/factsheets/dwgb/documents/ dwgb-3-12.pdf

Novokowski, K., Beatty, B., Conboy, M.J., & Lebedin, J. (2006). Water well sustainability in Ontario. Retrieved from http://www. greelycommunity.org/documents/Well%20Water%20Sustainability%20Jan%2006.pdf

Nuckols, J.R., Beane Freeman, L.E., Lubin, J.H., Airola, M.S., Baris, D., Ayotte, J.D., Taylor, A., Paulu, C., Karagas, M.R., Colt, J., Ward, M.H., Huang, A.-T., Bress, W., Cherala, S., Silverman, D.T., & Cantor, K.P. (2011). Estimating water supply arsenic levels in the New England bladder cancer study. Environmental Health Perspectives, 119(9), 1279-1285.

O'Fallon, L.R., & Dearry, A. (2002). Community-based participatory research as a tool to advance environmental health sciences. Environmental Health Perspectives, 110(Suppl. 2), 155-159.

Parvez, F., Chen, Y., Yunus, M., Olopade, C., Segers, S., Slavkovich, V., Argos, M., Hasan, R., Ahmed, A., Islam, T., Akter, M.M., Graziano, J.H., & Ahsan, H. (2013). Arsenic exposure and impaired lung function. Findings from a large population-based prospective cohort study. American Journal of Respiratory and Critical Care Medicine, 188(7), 813-819.

Peerson, A., & Saunders, M. (2009). Health literacy revisited: What do we mean and why does it matter? Health Promotion International, 24(3), 285-296.

Postma, J., Butterfield, PW, Odom-Maryon, T., Hill, W., & Butterfield, P.G. (2011). Rural children's exposure to well water contaminants: Implications in light of the American Academy of Pediatrics' recent policy statement. Journal of the American Academy of Nurse Practitioners, 23(5), 258-265.

Rahman, A., Persson, L.-A., Barbro, N., Arifeen, S.E., Ekstrom, E.-C., Smith, A.H., & Vahter, M. (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology, 21(6), 797-804.

Ratzan, S.C., & Parker, R.M. (2000). Introduction. In C.R. Seldon, M. Zorn, S.C. Ratzan, & R.M. Parker (Eds.), National library of medicine current bibliographies in medicine: Health literacy. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services.

Reynolds, K.A., Mena, K.D., & Gerba, C.P. (2008). Risk of waterborne illness via drinking water in the United States. Reviews of Environmental Contamination and Toxicology, 192, 117-158.

Ryker, S.J., & Small, M.J. (2008). Combining occurrence and toxicity information to identify priorities for drinking-water mixture research. Risk Analysis, 28(3), 653-666.

Safe Drinking Water Act of 1974 (U.S. Environmental Protection Agency), 93-523 [section] 300F (1974).

Slovic, P. (1987). Perception of risk. Science, 236(4799), 280-285.

Smith, A.H., & Steinmaus, C.M. (2009). Health effects of arsenic and chromium in drinking water: Recent human findings. Annual Review of Public Health, 30, 107-122.

Tiemann, M. (2010). Safe drinking water act (SDWA): Selected regulatory and legislative issues. Washington, DC: Congressional Research Service.

U.S. Environmental Protection Agency. (2012a). Public drinking water systems: Facts and figures. Retrieved from http://water.epa.gov/infrastructure/drinkingwater/pws/factoids.cfm

U.S. Environmental Protection Agency. (2012b). Proposed radon drinking water regulation. Retrieved from http://water.epa.gov/ lawsregs/rulesregs/sdwa/radon/regulations.cfm

Walker, M., Shaw, W.D., & Benson, M. (2006). Arsenic consumption and health risk perceptions in a rural western U.S. area. Journal of the American Water Resources Association, 42(5), 1363-1370.

Ward, M.H., deKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B.T., & VanDerslice, J. (2005). Workgroup report: Drinking-water nitrate and health-recent findings and research needs. Environmental Health Perspectives, 113(11), 1607-1614.

TABLE 1
Sources, Human Health Benchmarks, and Possible Health Effects
of Contaminants Potentially Present in New Hampshire Domestic
Well Water (a)

                                          Human Health
Contaminant          Source               Benchmark

                                          Value

Arsenic              Erosion of           0.01 mg/L
                     natural
                     deposits;
                     runoff from
                     historic
                     pesticide or
                     insecticide
                     application;
                     industrial
                     waste

E. coli;             Human and            Goal = zero; No
Legionella;          animal fecal         more than 5.0%
Giardia;             waste; some are      samples total
Cryptosporidium      naturally            coliform
                     present              positive in a
                                          month

Fluoride             Naturally in         4.0 mg/L
                     water in a few
                     parts of the
                     U.S.

Lead                 Corrosion of         0.015 mg/L
                     household
                     plumbing;
                     erosion of
                     natural
                     deposits

Manganese            Soil; aquifers;      0.05 mg/L
                     gasoline

Nitrate              Fertilizer use;      10 mg/L
                     manure; sewage
                     and septic-
                     system
                     effluent;
                     aquifer
                     materials

Nitrite                                   1 mg/L

Radon                Radioactive          2000 pCi/L
                     decay of
                     uranium in
                     aquifer;
                     building
                     materials

Uranium              Aquifers             0.03 mg/L

Volatile             Dry cleaning         0.013 mg/L
organics and         and gasoline;
pesticides           leaking storage
(e.g., MtBE)         tanks and
                     pipelines;
                     gasoline
                     spills; air
                     deposition;
                     unidentified
                     sources

                     Human Health         Possible Health
Contaminant          Benchmark            Effects

                     Type (b)

Arsenic              MCL                  Increased risk
                                          of several
                                          cancers;
                                          circulatory
                                          problems;
                                          endocrine
                                          disruption

E. coli;                                  Gastrointestinal
Legionella;                               illness
Giardia;                                  (diarrhea,
Cryptosporidium                           vomiting,
                                          cramps);
                                          Legionnaires'
                                          disease

Fluoride             MCL                  Dental
                                          fluorosis at
                                          high doses;
                                          increased risk
                                          of bone
                                          fractures

Lead                 U.S. EPA action      Children:
                     level                developmental
                                          delays;
                                          possible
                                          deficits in
                                          attention span
                                          and learning
                                          abilities
                                          Adults: kidney
                                          problems; high
                                          blood pressure

Manganese            Secondary MCL        Neurological
                                          effects;
                                          manganism; some
                                          evidence that
                                          shower
                                          inhalation can
                                          cause toxicity

Nitrate              MCL                  Neural tube
                                          defects;
                                          central nervous
                                          system defects;
                                          oral cleft
                                          defects;
                                          musculoskeletal
                                          defects;
                                          congenital
                                          heart defects;
                                          methemoglobinemia;
                                          possible
                                          promoter of
                                          carcinogenesis

Nitrite

Radon                NH DES action        Increased risk
                     level                of lung cancer
                                          for radon in
                                          air; increase
                                          in risk of
                                          stomach cancer
                                          for ingested
                                          radon

Uranium              MCL                  Increased risk
                                          of cancer;
                                          kidney toxicity

Volatile             NH DES HBSL for      Compound-
organics and         MtBE                 specific
pesticides                                effects
(e.g., MtBE)

(a) Modified and adapted from DeSimone, Hamilton, & Gillom,
2009 and AAP Committee on Environmental Health and Committee
on Infectious Diseases, 2009.

(b) MCL = maximum contaminant level; U.S. EPA = U.S.
Environmental Protection Agency; NH DES = New Hampshire
Department of Environmental Services; HBSL = health-based
screening level.

TABLE 2
Timeline of Partnership and Events

Month in 2012   Event (a)

May             Three TCC members attend the NH DES Drinking Water
                Source Protection Workshop. Dr. Josh Hamilton of
                DTMSRP presents information on the potential
                health effects of arsenic in New Hampshire well
                water.

                TCC researches the issue of contaminants in well
                water and presents the information at the next TCC
                meeting. TCC agrees to approach the Tuftonboro
                Selectboard about organizing a public information
                program.

                A member of the DTMSRP presents information to the
                Tuftonboro Selectboard about the potential health
                effects of common contaminants, a regulatory
                overview, and information about other local
                ordinances. The Tuftonboro Selectboard responds
                with support for an informational campaign. TCC
                meets to discuss a plan of action.

                TCC contacts several water testing labs to
                determine the cost of testing and service options.

June            A member of TCC continues to attend selectboard
                meetings to report progress, receive formal
                approval, and to ensure the proposed project was
                covered by the local media.

                TCC produces two articles about arsenic and other
                pollutants found in New Hampshire wells and the
                potential health effects. The articles appear in
                the town newsletter and a local paper. A reporter
                from the paper also publishes an article about a
                resident who had discovered an extremely high
                level of arsenic in their water.

                TCC announces plans to offer a water testing
                service and produces posters and a supplemental
                instruction sheet for residents. TCC also posts
                notices at three post offices and the library.

July            TCC distributes water testing kits at the town
                transfer station. Members of the TCC set up
                displays that include handouts from DTMSRP and NH
                DES. TCC makes three trips to the NH DHHS Lab to
                pick up test kits because demand exceeds
                estimations.

                In shifts, members of TCC collect water samples at
                the town transfer station. TCC checks residents'
                paperwork and collects money for the cost of water
                tests. The samples are properly bagged and
                refrigerated. The next morning two members deliver
                the samples to the state lab and help technicians
                organize the samples.

August          As residents receive water test results from the
                state lab, several members help people interpret
                reports or refer people to NH DES for technical
                assistance.

September       TCC begins planning a public forum for residents
                to include information about interpreting water
                test results and treatment options.

                TCC prepares a notice to be included with tax
                bills and a press release to advertise the Well
                Water Forum.

October         The first collection event in 2012 prompts 122
                water samples. A member of DTMSRP presents the
                collective results of the water tests.

November        NH DES and TCC hold a Well Water Forum where
                testing and treatment specialists present
                information on interpreting water tests and
                respond to questions about water treatment.

                TCC distributes, collects, and delivers additional
                test kits to the NH DHHS Lab.

(a) TCC = Tuftonboro Conservation Commission; NH DES = New Hampshire
Department of Environmental Services; DTMSRP = Dartmouth Toxic Metals
Superfund Research Program; NH DHHS = New Hampshire Department of
Health and Human Services.

TABLE 3
Tuftonboro Area Homeowner Survey, June 2012 and June 2013

                                     Limit
Parameter                 Samples   Type (a)     Limit Value

Total coliform bacteria     258       MCL      0 cts/100/mL (b)
Noncoliform counts          258                >200 cts/ 100/mL
E. coli bacteria            258       MCL        0 cts/100/mL
Analytical gross alpha       8        MCL          15 pCi/L
Arsenic                     275       MCL         0.01 mg/L
Chloride                    246       SMCL         250 mg/L
Copper                      237       SMCL         1.0 mg/L
Copper-stagnant             232       SMCL         1.0 mg/L
Fluoride                    240       MCL          4.0 mg/L
Fluoride SMCL               240       SMCL         2.0 mg/L
Hardness                    237                    250 mg/L
Iron                        237       SMCL         0.3 mg/L
Lead                        237        AL         0.015 mg/L
Lead-stagnant               232        AL         0.015 mg/L
Manganese                   237       SMCL        0.05 mg/L
Nitrate                     246       MCL          10 mg/L
Nitrite                     246       MCL           1 mg/L
Radon                       79                    2000 pCi/L
Sodium                      237       SMCL         250 mg/L
Uranium                     237       MCL         .030 mg/L
pH                          237                    pH <6.5
                            237                    pH >8.5
Volatile organic             3        MCL        varies with
  compounds                                        compound
Alkalinity                   2

                          # Above
Parameter                  Limit      %

Total coliform bacteria     61      23.64
Noncoliform counts          40      15.50
E. coli bacteria            14      5.43
Analytical gross alpha       0      0.00
Arsenic                     77      28.00
Chloride                     4      1.63
Copper                       1      0.42
Copper-stagnant             22      9.48
Fluoride                    10      4.17
Fluoride SMCL               33      13.75
Hardness                     0      0.00
Iron                        17      7.17
Lead                         1      0.42
Lead-stagnant               23      9.91
Manganese                   20      8.44
Nitrate                     21      8.54
Nitrite                      0      0.00
Radon                       24      30.38
Sodium                       1      0.42
Uranium                      0      0.00
pH                          37      15.61
                             8      3.38
Volatile organic             0      0.00
  compounds
Alkalinity                   0      0.00

(a) MCL = maximum contaminant level for public water systems;
SMCL = secondary maximum contaminant level for public water systems;
AL = action level for public water systems.

(b) PRESENT is unacceptable.
COPYRIGHT 2015 National Environmental Health Association
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2015 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:ADVANCEMENT OF THE PRACTICE
Author:Paul, Michael P.; Rigrod, Pierce; Wingate, Steve; Borsuk, Mark E.
Publication:Journal of Environmental Health
Article Type:Report
Geographic Code:1U1NH
Date:Dec 1, 2015
Words:6597
Previous Article:Prevalence of lead hazards and soil arsenic in U.S. housing.
Next Article:Improving state and local capacity to assess and manage risks associated with private wells and other drinking water systems not covered by the Safe...
Topics:

Terms of use | Privacy policy | Copyright © 2021 Farlex, Inc. | Feedback | For webmasters |