# A Generalzation of Ostrowski-gruss type inequality for first differentiable mappings.

1. Introduction

In 1938, A. Ostrowski (8) proved the following integral inequality.

Theorem 1. Let f: I[??] R [right arrow]R be a differentiable mapping in [I.sup.0] (interior of I), and let a, b [member of] [I.sup.0] with a < b. If [f.sup.']:(a,b)[right arrow]R is bounded on (a, b) with sup |[f.sup.'](t)| [less than or equal to] M, then we have

T[member of][a,b]

|f(x) - [1/[b - a]][[[integral].sub.a.sup.b] f(t)dt|[less than or equal to][1/4 + [[(x - [a + b]/2)].sup.2]/[(b - a).sup.2]](b - a)M, (1.1)

for all x [member of] [a, b].

The constant 1/4 is sharp in the sense that it cannot be replaced by a smaller one.

This inequality provides an upper bound for the approximation of integral mean of a function f by the functional value f(x) at x[member of] [a, b] .In 1997, Dragomir and Wang (3), by the use of the Gruss inequality proved the following Ostrowski-Gruss type integral inequality.

Theorem 2. Let f: I[right arrow]R, where I [??] R is an interval, be a mapping differentiable in the interior [I.sup.0] of I, and let a, b [member of] [I.sup.0] with a < b. If [gamma] [less than or equal to] [f.sup.'](x) [less than or equal to] [GAMMA], x [member of] [a, b] for some constants [gamma], [GAMMA] [member of] R, then

|f(x) - [1/[b - a]][[b][integral][a]]f(t)dt - [[f(b) - f(a)]/[b - a]](x - [a + b]/2)|[less than or equal to][1/4](b - a)([GAMMA] - [Gamma]), (1.2)

for all x[member of][a, b] .

This inequality provides a connection between Ostrowski inequality (8) and the Gruss inequality (5). In 2000, M. Matic, J. Pecaric and N. Ujevic (7), by the use of pre-Gruss inequality improved the factor of the right membership of (1.2) with [1/[4[square root of 3]]] as follows.

Theorem 3. Under the assumption of Theorem 2, we have

|f(x) - [1/[b - 1]][[b][integral][a]]f(t)dt - [[f(b) - f(a)]/[b - a]](x - [a + b]/2)| [less than or equal to][1/[4[square root of (3)]]]([GAMAM] - [gamma])(b - a), (1.3)

for all x[member of][a, b]

In 2000, Barnett et al. (1), by the use of Chebyshev's functional, improved the Matic-Pecaric-Ujevic result by providing first membership of the right side of (1.3) in terms of Euclidean norm as follows.

Theorem 4. Let f: [a,b] [right arrow] R be an absolutely continuous function whose derivative [f.sup.'][member of] [L.sub.2] [a, b] . Then we have the inequality

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.4)

for all x [member of] [a, b].

We define for two mappings f, g: [a,b] [right arrow]R, the Chebyshev functional as

T(f,g) = [1/[b - a]][[integral].sub.a.sup.b]f(t)g(t)dt - (1/[b - a][[integral].sub.a.sup.b]f(t)dt)(1/[b - a][[integral].sub.a.sup.b]g(t)dt),

provided that f, g and fg are integrable on [a, b].

Also in (1) we can find the pre-Gruss inequality as

[T.sup.2] (f, g) [less than or equal to] T (f, f) T (g, g),

where f, g [member of] [L.sub.2] [a, b] and T (f, g) is the Chebyshev functional as defined above.

In this paper, we give a generalization of (1.4) and then apply it to probability density functions, generalized beta random variable and special means.

2. Main Results

Theorem 5. Let f: [a,b] [right arrow] R be an absolutely continuous function whose first derivative [f.sup.']

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (2.1)

Proof. We consider the kernel p: [[a,b].sup.2] [right arrow] R as defined in (2):

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Using Korkine's identity

T(f,g): = [1/[2[[(b - a)].sup.2]]][[b][integral][a]][[b][integral][a]](f(t) - f(s))(g(t) - g(s))dtds,

we obtain

[1/[b - a]][[b][integral][a]]p(x,t)[f.sup.'](t)dt - [1/[b - a]][[b][integral][a]]p(x,t)dt[1/[b - a]][[b][integral][a]][f.sup.'](t)dt

= [1/[2[[(b - a)].sup.2]]][[b][integral][a]][[b][integral][a]](p(x,t) - p(x,s))([f.sup.'](t) - [f.sup.'](s))dtds. (2.2)

Since,

[1/[b - a]][[b][integral][a]]p(x,t)[f.sup.'](t)dt = (1 - h)f(x) + h[[f(a) + f(b)]/2] - [1/[b - a]][[b][integral][a]]f(t)dt,

[1/[b - a]][[b][integral][a]]p(x,t)dt = (1 - h)(x - [a + b]/2),

and

[1/[b - a]][[b][integral][a]][f.sup.'](t)dt = [[f(b) - f(a)]/[b - a]],

then by (2.2) we get the following identity

(1 - h)[f(x) - [[f(b) - f(a)]/[b - a]](x - [a + b]/2)] + h[[f(a) + f(b)]/2] - [1/[b - a]][[b][integral][a]]f(t)dt

= [1/[2[[(b - a)].sup.2]]][[b][integral][a]][[b][integral][a]](p(x,t) - p(x,s))([f.sup.'](t) - [f.sup.'](s))dtds, (2.3)

for all x [member of] [a + h [b - a]/2, b - h [b - a]/2] and h [member of] [0,1]

Using the Cauchy-Bunaikowski-Schwartz inequality for double integrals, we may write

[1/[2[[(b - a)].sup.2]]]|[[b][integral][a]][[b][integral][a]](p(x,t) - p(x,s))([f.sup.'](t) - [f.sup.'](s))dtds|

[less than or equal to][[(1/[2[(b - a).sup.2]][[b][integral][a]][[b][integral][a]][[(p(x,t) - p(x,s))].sup.2]dtds)].sup.[1/2]] X [[(1/[2[(b - a).sup.2]][[b][integral][a]][[b][integral][a]][[([f.sup.'](t) - [f.sup.'](s))].sup.2]dtds)].sup.[1/2]]. (2.4)

However,

[1/[2[[(b - a)].sup.2]]][[b][integral][a]][[b][integral][a]][[(p(x,t) - p(x,s))].sup.2]dtds

= [1/[b - a]][[b][integral][a]][p.sup.2](x,t)dt - (1/[b - a][[b][integral][a]]p(x,t)dt[).sup.2]

= [1/[b - a]][[[[(x - (a + h[b - a]/2))].sup.3] + [[(b - h[[b - a]/2] - x)].sup.3]]/3 + [[h.sup.3][[(b - a)].sup.3]]/12] - [[(1 - h)].sup.2][[(x - [a + b]/2)].sup.2]. (2.5)

In addition simple calculations shows that

[[(x - (a + h[b - a]/2))].sup.3] + [[(b - h[[b - a]/2] - x)].sup.3]

= (b - a)(1 - h)[3[[(x - [a + b]/2)].sup.2] + [[[(1 - h)].sup.2][[(b - a)].sup.2]]/4], (2.6)

and

[1/[2[[(b - a)].sup.2]]][[b][integral][a]][[b][integral][a]][[([f.sup.'](t) - [f.sup.'](s))].sup.2]dtds

= [1/[b - a]][parallel][f.sup.'][parallel]sub.2.sup.2] - [[([f(b) - f(a)]/[b - a])].sup.2]. (2.7)

Using (2.3)-(2.7),we deduce the first inequality.

Moreover, if [gamma] [less than or equal to][f.sup.'](t) [less than or equal to] [GAMMA] almost everywhere t on (a, b), then, by using Gruss inequality, we have

0[less than equal or equal to][1/[b - a]][[b][integral][a]][([f.sup.'](t)).sup.2]dt - (1/[b - a][[b][integral][a]][f.sup.'](t)dt[).sup.2][less than or equal to][1/4][[([GAMMA] - [gamma])].sup.2],

which proves the last inequality of (2.1).

Remark 1. Since

[3h.sup.2]-3h + 1 [less than or equal to] 1, [for all] h [member of] [0, 1].

and is minimum for h = 1/2.

Thus, (2.1) shows an overall improvement in the inequality obtained by Barnett et al. (5).

The following corollary contains some special cases of (2.1).

Corollary 1. 1. For h = 1, i.e., x = [a + b]/2, (2.1) gives

|(b - a)[[f(a) + f(b)]/2] - [[b][integral][a]]f(t)dt|

[less than or equal to][[[(b - a)].sup.2]/[2[square root of 3]]][[1/[b - a][parallel][f.sup.'][parallel][.sub.2.sup.2] - [[([f(b) - f(a)]/[b - a])].sup.2]].sup.[1/2]],

[less than or equal to] [1/[4[square root of 3]]]([GAMMA] - [gamma])[[(b - a)].sup.2].

(if [gamma] [less than or equal to] [f.sup.'](t) [less than or equal to] [GAMMA] almost everywhere t on (a, b).) (2.8)

which is trapezoid inequality.

2. For h = 0 and x = [a + b]/2, (2.1) gives

|(b - a)f([a + b]/2) - [[b][integral][a]]f(t)dt|

[less than or equal to][[[(b - a)].sup.2]/[2[square root of 3]]][[[1/[b - a][parallel][f.sup.'][parallel][.sub.2.sup.2] - [[([f(b) - f(a)]/[b - a])].sup.2]]].sup.[1/2]],

[less than or equal to][1/[4[square root of 3]]]([GAMMA] - [gamma]][[(b - a)].sup.2].

(if [gamma] [less than or equal to] [f.sup.'](t) [less than or equal to] [GAMMA] almost everywhere t on (a, b).) (2.9)

which is mid-point inequality.

3. For h = 1/2 and x = [a + b]/2, (2.1) gives

|[[f(a) + 2f([a + b]/2) + f(b)]/4] - [1/[b - a]][[b][integral][a]]f(t)dt|

[less than or equal to][[[(b - a)].sup.2]/[4[square root of 3]]][[1/[b - a][parallel][f.sup.'][parallel[.sub.2.sup.2] - [[([f(b) - f(a)]/[b - a])].sup.2]].sup.[1/2]],

[less than or equal to][1/[8[square root of 3]]]([GAMMA] - [gamma])[[(b - a)].sup.2].

(if [gamma] [less than or equal to] [f.sup.'](t) [less than or equal to] [GAMMA] almost everywhere t on (a, b).) (2.10)

which is an averaged mid-point and trapezoid inequality.

4. For h =1/3 and x = [a + b]/2, (2.1) gives

|(b - a[[f(a) + 4f([a + b]/2) + f(b)]/6] - [[b][integral][a]]f(t)dt|

[less than or equal to][[[(b - a)].sup.2]/6][[1/[b - a][parallel][f.sup.'][parallel][.sub.2.sup.2] - [[([f(b) - f(a)]/[b - a])].sup.2]].sup.[1/2]],

[less than or equal to][1/12]([GAMMA] - [gamma])[[(b - a)].sup.2].

(if [gamma] [less than or equal to] [f.sup.'] (t) [less than or equal to] [GAMMA] almost everywhere t on (a, b).) (2.11)

which is a variant of Simpson's inequality for first differentiable function f, [f.sup.'] is integrable and there exist constants [gamma], [GAMMA] [member of] R such that [gamma] [less than or equal to] [f.sup.'](t) [less than or equal to] [GAMMA], t [member of] (a, b).

3. Applications

3.1 Application for P.D.F's

Let X be a random variable having the p.d.f f: [a, b] [right arrow] [R.sub.+] and the cumulative distribution function F: [a, b] [right arrow] [0, 1], i.e.,

F(x) = [[x][integral][a]]f(t)dt,x[member of][a + h[[b - a]/2],b - h[b - a]/2][subset][a, b],

and

E(X) = [[b][integral][a]]tf(t)dt,

is the expectation of the random variable X on the interval [a, b] . Then, we may have the following.

Theorem 6. Under the above assumptions and if the p.d.f belongs to [L.sub.2] [a, b],then, we have the inequality:

|(1 - h)[F(x) - [1/[b - a]](x - [a + b]/2)] + [h/2] - [[b - E(X)]/[b - a]]|

[less than or equal to][1/[b - a]][[1/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(x - [a + b]/2)].sup.2]].sup.[1/2]] X [[(b - a)[parallel]f[parallel][.sub.2.sup.2] - 1].sup.[1/2]],

[less than or equal to][[(M - m)]/[2(b - a)]][[1/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(x - [a + b]/2)].sup.2]].sup.[1/2]],

(if m [less than or equal to] f [less than or equal to] M almost everywhere on [a, b].) (3.1)

for all x [member of] [a + h [b - a]/2, b - h [b - a]/2].

Proof. Put in (2.1) F instead of f to get (3.1) and the details are omitted.

Corollary 2. Under the above assumptions, we have

|(1 - h)Pr(X[less than or equal to][a + b]/2) + [h/2] - [[b - E(X)]/[b - a]]|

[less than or equal to][1/[2[square root of 3]]][[(3[h.sup.2] - 3h + 1)].sup.[1/2]][[(b - a)[parallel]f[parallel][.sub.2.sup.2] - 1].sup.[1/2]],

[less than or equal to][1/[4[square root of 3]]][[(3[h.sup.2] - 3h + 1)].sup.[1/2]](M - m),m[less than or equal to]f[less than or equal to]M as above. (3.2)

3.2 Applications for generalized beta random variable

If X is a beta random variable with parameters [[beta].sub.3] > -1, [[beta].sub.4] > -1 and for [[beta].sub.2] > 0 and any [[beta].sub.1], the generalized beta random variable

Y = [[beta].sub.1]+[[beta].sub.2]X,

is said to have a generalized beta distribution (4) and the probability density function of the generalized beta distribution of beta random variable is,

f(x) = {[[[[(x - [beta].sub.1)].sup.[beta].sub.3][ [([[beta].sub.1] + [([[beta].sub.2] - x)].sup.[beta]4]]/[[beta]([[beta].sub.3] + 1,[[beta].sub.4] + 1)[[beta].sub.2.sup.[([beta].sub.3 + [beta].sub.4 + 1)]]]],for[beta].sub.1 < x < [beta].sub.1 + [beta].sub.2, 0, otherwise.

where [beta] (l,m) is the beta function with l, m > 0 and is defined as

[beta](l,m) = [[1][integral][0]][x.sup.[l - 1]][[(1 - x)].sup.[m - 1]]dx.

For p, q > 0 and h [member of] [0, 1), we choose,

[[beta].sub.1] = h/2,

[[beta].sub.2] = (1-h),

[[beta].sub.3] = p-1,

[[beta].sub.4] = q-1,

Then, the probability density function associated with generalized beta random variable

Y = h/2 + (1-h)X,

takes the form

f(x) = {[[[[(x - h/2)].sup.[p - 1]][[(1 - [h/2] - x)].sup.[q - 1]]]/[[beta](p, q)[[(1 - h)].sup.[p + q - 1]]]],[h/2] < x < 1 - [h/2] 0, otherwise.

Now,

E(Y) = [(1 - [h/2]).[integral](h/2)]]xf(x)dx = (1 - h)[p/[p + q]] + [h/2]. (3.3)

and

[parallel]f(.;p, q)[[parallel].sub.2.sup.2] = [1/[(1 - h)[[beta].sup.2](p, q)]][beta](2p - 1,2q - 1).

Then, by Theorem 6, we may state the following.

Proposition 1. Let X be a beta random variable with parameters (p, q). Then for generalized beta random variable

Y = h/2 + (1 - h) X,

we have the inequality

|[Pr(Y[less than or equal to]x) - x + 1/2] - [q/[p + q]]|

[less than or equal to][[1/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(x - 1/2)].sup.2]].sup.[1/2]] X [[[[beta](2p - 1,2q - 1) - (1 - h)[[beta].sup.2](p, q)].sup.[1/2]]/[[[(1 - h)].sup.[3/2]][beta](p, q)]]. (3.4)

for all x [member of] [h/2, 1 - h/2].

In particular, for x = 1/2 in (3.4), we have:

|Pr(Y[less than or equal to]1/2) - [q/[p + q]]|

[less than or equal to][1/[2[square root of 3]]][[(3[h.sup.2] - 3h + 1)].sup.[1/2]][[[[beta](2p - 1,2q - 1) - (1 - h)[[beta].sup.2](p, q)].sup.[1/2]]/[[[(1 - h)].sup.[3/2]][beta](p, q)]].

3.3 Applications for Special Means

Example 1. Consider the mapping f (x) = [x.sup.p], p [member of] R \ {-1,0}. Then

[1/[b - a]][[integral].sub.a.sup.b]f(t)dt = [L.sub.p.sup.p](a,b),

[[f(b) - f(a)]/[b - a]] = p[L.sub.[p - 1].sup.[p - 1]],

[[f(a) + f(b)]/2] = [[[a.sup.p] + [b.sup.p]]/2] = A([a.sup.p],[b.sup.p]),

and

[1/[b - a]][parallel][f.sup.'][parallel][.sub.2.sup.2] = [1/[b - a]][[integral].sub.a.sup.b]|[f.sup.'](t)[|.sup.2]dt = [p.sup.2][L.sub.[2(p - 1)].sup.[2(p - 1)]].

Therefore, (2.1) takes the form

|(1 - h)[[x.sup.p] - p[L.sub.[p - 1].sup.[p - 1]](x - A(a,b))] + hA([a.sup.p],[b.sup.p]) - [L.sub.p.sup.p]|

[less than or equal to]|p|[[[[(b - a)].sup.2]/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(x - A(a,b))].sup.2]].sup.[1/2]] X [[[L.sub.[2(p - 1)].sup.[2(p - 1)]] - [L.sub.[p - 1].sup.[2(p - 1)]]].sup.[1/2]] (3.5)

Choose x = A(a, b) in (3.5), to get

|(1 - h)[A.sup.p](a,b) + hA([a.sup.p],[b.sup.p]) - [L.sub.p.sup.p]|

[less than or equal to][[(b - a)]/[2[square root of 3]]][[(3[h.sup.2] - 3h + 1)].sup.[1/2]]|p|[[[L.sub.[2(p - 1)].sup.[2(p - 1)]] - [L.sub.[p - 1].sup.[2(p - 1)]]].sup.[1/2]].

which is minimum for h = 1/2. Moreover for h = 1,

|A([a.sup.p],[b.sup.p]) - [L.sub.p.sup.p]|

[less than or equal to][[(b - a)]/[2[square root of 3]]]|p|[[[L.sub.[2(p - 1)].sup.[2(p - 1)]] - [L.sub.[p - 1].sup.[2(p - 1)]]].sup.[1/2]].

Example 2. Consider the mapping f(x) = [1/x],(x [member of] [a + h [b - a]/2,b - h [b - a]/2][subset](0,[infinity])).

Then,

[1/[b - a]][[b][integral][a]]f(t)dt = [1/L],

[[f(b) - f(a)]/[b - a]] = - [1/[G.sup.2]],

[[f(b) + f(a)]/2] = [[A(a,b)]/[G.sup.2]],

[1/[b - a]][[b][integral][a]]|[f.sup.'](t)[|.sup.2]dt = [[[a.sup.2] + ab + [b.sup.2]]/[3[a.sup.3][b.sup.3]]],

and

[1/[b - a]][[b][integral][a]]|[f.sup.'](t)[|.sup.2]dt - [[([f(b) - f(a)]/[b - a])].sup.2] = [[[(b - a)].sup.2]/[3[a.sup.3][b.sup.3]]].

Therefore, (2.1) becomes,

|(1 - h)[1/x + [1/[G.sup.2]](x - A(a,b))] + h[[A(a,b)]/[G.sup.2]] - [1/L]|

[less than or equal to][[[[(b - a)].sup.2]/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(x - A(a,b))].sup.2]].sup.[1/2]] X [[(b - a)]/[[square root of 3][G.sup.3]]]. (3.6)

Choosing x = A(a, b) in (3.6),

|(1 - h)[1/A] + h[[A(a,b)]/[G.sup.2]] - [1/L]|

[less than or equal to][[[(b - a)].sup.2]/[6[G.sup.3]]][[(3[h.sup.2] - 3h + 1)].sup.[1/2]].

If we choose x = L in (3.6),we get

|(1 - h)[L/[G.sup.2]] + (2h - 1)[[A(a,b)]/[G.sup.2]] - h[1/L]|

[less than or equal to][[[[(b - a)].sup.2]/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(L - A(a,b))].sup.2]].sup.[1/2]] X [[(b - a)]/[[square root of 3][G.sup.3]]].

Example 3. Finally, let us consider the mapping

f(x) = ln x,(x [member of] [a + h [b - a]/2, b - h [b - a]/2][subset](0,[infinity])). Then

[1/[b - a]][[b][integral][a]]f(t)dt = ln I,

[[f(b) - f(a)]/[b - a]] = [1/L],

[[f(a) + f(b)]/2] = ln G,

[1/[b - a]][[b][integral][a]]|[f.sup.'](t)[|.sup.2]dt = [1/[G.sup.2]],

and

[1/[b - a]][[b][integral][a]]|[f.sup.'](t)[|.sup.2]dt - ([f(b) - f(a)]/[b - a][).sup.2] = [[[L.sup.2] - [G.sup.2]]/[[L.sup.2][G.sup.2]]].

Thus, (2.1) takes the form,

|ln[[[x.sup.[(1 - h)]][G.sup.h]]/I] - (1 - h)[[x - A(a,b)]/L]|

[less than or equal to][[[[(b - a)].sup.2]/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(x - A(a,b))].sup.2]].sup.[1/2]] X [[[([L.sup.2] - [G.sup.2])].sup.[1/2]]/[LG]].(3.7)

For x = A(a, b) in (3.7), we get:

|ln[[[(A(a,b)).sup.[(1 - h)]][G.sup.h]]/I]|

[less than or equal to][[(b - a)[[(3[h.sup.2] - 3h + 1)].sup.[1/2]][[([L.sup.2] - [G.sup.2])].sup.[1/2]]]/[LG]].

which for h = 1, takes the form

|ln[G/I]|

[less than or equal to][[(b - a)[[([L.sup.2] - [G.sup.2])].sup.[1/2]]]/[2[square root of 3]LG]].

Also, choosing x = I, we get

|ln[[G.sup.h]/[I.sup.h]] - (1 - h)[[I - A(a,b)]/L]|

[less than or equal to][[[[(b - a)].sup.2]/12(3[h.sup.2] - 3h + 1) + h(1 - h)[[(I - A(a,b))].sup.2]].sup.[1/2]] X [[[([L.sup.2] - [G.sup.2])].sup.[1/2]]/[LG]].

References

(1) N. S. Barnett, S. S. Dragomir, and A. Sofo, Better bounds for an inequality of Ostrowski type with applications, Demonstratio Mathematica, 34 no.3 (2001), 533-542 Preprint RGMIA Res. Rep. Coll., 3 no. 1 (2000), Article 11.

(2) S. S. Dragomir, P. Cerone, and J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration, Appl. Math. Lett.,13 (2000), 19-25.

(3) S. S. Dragomir and S. Wang, An inequality of Ostrowski-Gruss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33 no. 11 (1997), 16-20.

(4) Z. A. Karian and E. J. Dudewicz, Fitting Statistical Distributions, CRC Press, (2000).

(5) D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht/ Boston/London, (1993).

(6) D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Inequalities for functions and their integrals and derivatives, Kluwer Academic Publishers, (1991).

(7) M. Matic, J. Pecaric, and N. Ujevic, Improvements and further generalizations of some inequalities of Ostrowski-Gruss type inequalities, Comput. Math. Appl., 39 (2000), 161-179.

(8) A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.

Fiza Zafar [dagger] CASPAM, Bahauddin Zakariya University, Multan 60800, Pakistan. and

Nazir Ahmad Mir [double dagger] Dept. of Mathematics, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan.

Received September 15, 2008, Accepted October 20, 2008.

* 2000 Mathematics Subject Classification. Primary 26D15; Secondary 41A55.

[dagger] Corresponding author. E-mail: fizazafar@gmail.com

No portion of this article can be reproduced without the express written permission from the copyright holder.

Author: Printer friendly Cite/link Email Feedback Zafar, Fiza; Mir, Nazir Ahmad Tamsui Oxford Journal of Mathematical Sciences Report 9PAKI May 1, 2010 3803 New sharp bound for a general Ostrowski type inequality. Wavelet transform associated with the q-Dunkl operator. Inequalities (Mathematics) Mappings (Mathematics) Maps (Mathematics) Numbers, Rational Rational numbers Theorems (Mathematics)