Printer Friendly

190 years of Sargassum taxonomy, facing the advent of DNA phylogenies.

Introduction

Taxonomy is the discipline describing, naming and classifying living organisms, it is essential to the inventory and understanding ofbiodiversity. Knowing and describing organisms in sufficient details allows (1) to identify and classify them accurately, (2) to study their biology and ecology, (3) to understand their geographical distribution, estimate biodiversity hotspots and define regions of interest for conservation, as well as (4) selecting species with economic potential. Incorrect identifications lead to errors on the quantification of biodiversity, on biological and ecological processes, on the definition of conservation zones, or on the wrong selection of the species containing the targeted molecule of interest. Taxonomy is in constant evolution and tributary of technology progress. The advents of electronic microscopy, as well as biochemical and molecular analyses have been factors responsible for the evolution of our view of taxonomy. Two hundred years ago, phycologists were describing species based on fragments collected as drifts during the first expeditions around the world (Turner, 1808, 1809, 1811; C. Agardh, 1820; Montagne, 1845). Nowadays, the world has been more extensively explored and phycologists study the morphological and molecular variability of populations based on tens of specimens collected at various geographical levels (Tatarenkov et al., 2007; Zhao et al., 2007; Cheang et al., 2008), sequence genomes (Oudot-Le Secq et al., 2002, 2006), and attempt to identify species with genetic barcodes (Saunders, 2005; Robba et al., 2006; Chase et al., 2007).

Sargassum C. Agardh, described 190 years ago (C. Agardh, 1820), represents today the most species rich genus of the marine macrophytes (estimated from Guiry & Guiry, 2010) and the morphologically most complex phaeophyceaen genera. Species are distributed worldwide and the genus is especially well represented in tropical and inter-tropical regions where it forms dense submarine forests. These forests structure an essential habitat for numerous marine species, and are equivalent to the temperate Fucus Linnaeus, Cystoseira C. Agardh or Kelp forests (Nizamuddin, 1962; Phillips, 1995; Steneck et al., 2002; Thibaut et al., 2005). Some species are economically important, especially in Asian countries where they are exploited by agro-food, textile, cosmetic and pharmaceutical industries. Chemical properties may vary from one species to another (Prud'homme van Reine, 2002; Smit, 2004). However, with roughly 1000 taxa, of which less than 40% are recognized as current, identifying a species is often a difficult task (Mattio et al., 2010). The placement of species within a section of the genus or its subdivisions is often difficult and illustrates the challenge between a high intra-specific morphological variability and a classification system based on ancient and fragmentary material not representative of species' polymorphy (pers. obs.). Although Sargassum's taxonomy has been the focus of increased attention since 1985 (Abbott, 2004), it is still in need of systematic re-examination (Mattio et al., 2010).

Morphology

The morphology of Sargassum is characterised by a thallus composed of a fixation holdfast, one to several main axes ramified into 'branches' of several orders which differentiate into foliar appendices named 'leaves', vesicles (aerocysts) and receptacles (reproductive organs). The overall shape of the thallus may be more or less linear or bushy, it may measure a few centimetres in exposed habitats (ex. S. spinuligerum var. crispata (Sonder) J. Agardh in Kiuva reef, Fiji--pers. obs.) to several meters in sheltered areas [ex. S. sp. in Colombia, O. Camacho-Hadad pers. comm.; up to 10 m for the invasive S. muticum (Yendo) Fensholt in France (Belsher & Pommellec, 1988)]. The holdfast is discoid, conical or rhizoidal and do no penetrate the substratum. Main axes are perennial, short, cylindrical or flattened in section, and bear the scars of deciduous branches. Secondary or other order axes or branches are cylindrical or flattened in section, with a smooth or 'spiny (1)' surface, and are distichously or spirally arranged. In species belonging to S. section Polycystae Mattio et Payri some of the secondary branches are differentiated into stoloniferous axes bearing haptera (or secondary holdfasts). The shape of leaves is highly diversified (Fig. 1). They can be simple, bifid or divided several times, rond, spatulate, turbinate, lanceolate, ovoid, linear or of any intermediate forms. The basis of leaves is rounded or attenuate, symmetrical or not. The pedicel is inexistent or of variable length, cylindrical or flattened in section and smooth or 'spiny'. The leaves' margin may be simple or double at the apex, and be smooth, undulate, finely serrate, deeply dentate or any intermediate aspect. The midrib may be short and thick or thinner and reaching the apex, or any intermediate length. The apex may be acute, rounded or truncated, simple or showing a cup-like shaped depression. Cryptostomata, of variable number and size, are either randomly distributed over the leaves' surface or aligned on each side of the midrib in one to several rows. Vesicles (or aerocysts) may be spherical, ovoid, pyriform or of any intermediate shape; they are smooth or bear a mucron which may be simple or multiple, thin and spine-like, foliar, or in crown. Vesicles are held by a pedicel variable in size, cylindrical, flattened or foliar. For some species, the vesicle may develop in the middle of leaf and is named phyllocyst (Fig. 2). Receptacles are either solitary or in tight to open clusters, simple, branched, bearing or not small vesicles and/or leaves (mixed receptacles), lanceolate or linear, smooth or 'spiny', of cylindrical or flattened section. Receptacles are said zygocarpic (composed or mixed), malacocarpic (cylindrical and smooth) or acanthocarpic (spiny), qualified of carpophylles or pseudocarpophylles, arranged in cymes, racemes or glomerules. In case of a dioecious species, a male/female dimorphism may be observed with male receptacles often slender than female receptacle shorter and stockier (Fig. 3). Sexual dimorphism may concern the whole thallus.

[FIGURE 1 OMITTED]

Morphological characters may present a high intra-specific morphological plasticity, either between populations, within populations or even within one individual. Kilar and Hanisak (1989) have identified as many as 47 different morphotypes within the same S. polyceratium Montagne population in Florida. They have also pointed out that a number of morphological variations depend on seasons, habitat type, and water motion. In a review on the phenotypical variability of Sargassum, Kilar et al. (1992) underlined the influence of environmental conditions, age and period of reproduction on the size, shape and aspect of leaves. According to these authors, the morphological characters of a given species may vary in time, at intra- or inter-individual level, depending on environmental conditions and spatially (inter-population).

[FIGURE 2 OMITTED]

[FIGURE 3 OMITTED]

The systematic of Sargassum is based on various morphological characters. Subgenera are mainly recognizable by the organisation and aspect of their axes, but S. subgen. Bactrophycus J. Agardh and Arthrophycus J. Agardh are differentiated by their receptacle morphology (Yoshida, 1989a, b). However, the several morphological characters used for distinguishing further subdivisions do not show a consensus. Sections of S. subgen. Bactrophycus are first recognizable by the shape and organisation of axes, and then by the receptacle morphology while sections of S. subgen. Sargassum are originally exclusively recognizable based on receptacle morphology. The sub-divisions of these sections are based on a more detailed description of receptacle morphology and reproduction strategies (dioecy, monoecy, male/female dimorphism or not), and to a less extent on the morphology of vesicles, holdfast or axes. Within each subdivision, species are identified on supplementary morphological characters including, most often, morphological variation in the aspect and shape of leaves, vesicles and receptacles. Infra-specific ranks such as varieties and formas are mainly identified according to minor morphological variations which are difficult to differentiate from a simple ecomorph. For instance, some taxa are distinguished by the absence or presence of vesicles (eg. S. tahitense Grunow and S. boraborense (Grunow) Setchell), whereas the abundance of vesicles is clearly influenced by environmental conditions such as hydrodynamism (Kilar et al., 1992; Mattio et al., 2008).

Taxonomical Ambiguities

Nomenclatural ambiguities have been documented since the establishment of Sargassum (Silva et al., 1996: 930), which is consensually recognized as a difficult genus in need for a significant taxonomic revision. Taxonomic ambiguities are found at two levels: (i) the level of terminal taxa, ie. ambiguities in species distinction, and (ii) the level of classification, ie. ambiguities in the attribution of a particular species to one of the genus' numerous subdivisions. The classification and description of most species date back to the 19th century mainly with the works of C. Agardh (1820, 1824) and J. Agardh (1848, 1889). Monographies and collections of these authors are representative of the genus taxonomy at this time. Diagnoses mainly consist in short paragraphs describing briefly the type material, which was most of the time not properly designated. The latter is often represented by an incomplete dry sample in bad shape, collected as drift in an imprecise locality during the first expeditions around the world (pers. obs. Museum of Lund, Agardh's collection). As a consequence and without knowledge of individuals in their natural habitat, C. and J. Agardh and their contemporaries may have described several taxa from fragments belonging to the same species. The situation is even increased by the substance of diagnoses, which without illustrations, may correspond to several very different species (pers. obs.). In addition, it is difficult to retrieve collections and type specimens as some of them might have disappeared or been destroyed (eg. the fire of the Berlin's Museum during the Second World War).

The origin of these taxonomic confusions is probably linked to the high polymorphy of the genus as it was likely underestimated at this time. Morphological characters used for Sargassum taxonomy may show important phenotypic variations related to habitat diversity, exposition or seasons (De Wreede, 1976; Magruder, 1988; Killar et al., 1992; Trono, 1992; Gillespie & Critchley, 1997, 2001). This polymorphy has sometimes been wrongly interpreted as inter-specific variations, thus creating several epithets for the same species (Womersley & Bailey, 1970; Guiry & Guiry, 2010). Considering this morphological variability, Grunow (1915, 1916a, b) described numerous varieties and formas, thus increasing the complexity of the genus taxonomy. Many of these infra-specific taxa have been considered as superfluous by various authors (Womersley, 1987; Yoshida, 1987; Mattio & Payri, 2009) and there is often a lack of information about taxa's morphological variability. Consequently, identifying species often remains uncertain.

According to Kilar et al. (1992), taxonomic ambiguities are linked to a considerable variability in species description. Authors list 11 potential reasons for taxonomic confusions: (i) an important morphological plasticity, (ii) variable ontogenic forms, (iii) a high polymorphism, (iv) morphological characters which may be absent (eg. vesicles and receptacles), (v) too much importance given to highly variable characters such as leaves, (vi) hybridization which may produce specimens with intermediate forms, (vii) the possibility of polyploidy which may produce divergent morphologies, (viii) the number of varieties and formas described in the literature, (ix) the absence of polymorphy representation by type specimens which are often fragments, (x) absence of a consensus underlying characters of taxonomic importance, (xi) absence of relevant information concerning ecology, development, and reproduction of most of the species. With the aim of circumscribing taxa's morphological variability, Kilar et al. (1992) made several recommendations notably including studies on a sufficient number of specimens, in various seasons and issued from populations submitted to various environmental conditions. These authors also recommend in vitro reproduction tests and genetic analyses.

Once species have been identified, classifying them into the various subdivisions of the genus is often confusing (Womersley, 1954; Yoshida, 1983; Mattio et al., 2009, 2010). This is mainly due to the combination of factors such as a high intra-specific polymorphy, and a classification system based on ancient and fragmentary material. For example, S. mcclurei Setchell was first placed within S. subgen. Arthrophycus (Setchell, 1933), then transferred to S. subgen. Bactrophycus sect. Phyllocystae Tseng (Tseng et al., 1985), and finally to S. subgen. Sargassum when S. sect. Phyllocystae was transferred to this subgenus by Stiger et al. (2000). Womersley (1954) proposed to include S. subgen. Schizophycus J. Agardh into S. subgen. Sargassum and did not recognize the various subdivisions of S. subgen. Phyllotrichia (Areschoug) J. Agardh, which according to him are based on insignificant morphological variations. Later, in an attempt to resolve main ambiguities, Yoshida (1983) proposed to classify Sargassum subgenera in two groups: (i) those with leaves perpendicular to main axis (ie. horizontally oriented) (S. subgen. Bactrophycus and Arthrophycus), and (ii) those with leaves parallel to the main axis (ie. vertically oriented) (S. subgen. Phyllotrichia, Schizophycus, and Sargassum). In their revision of S. subgen. Sargassum from China, Tseng and Lu (1988, 1992a, b, 1995a, b, c, 1997a, b, 1999, 2002a, b, c, d) clarified and synthesized characters having taxonomic significance for the identification of sections, subsections, series and species groups. But according to Abbott (1992: 1--3), the entire Sargassum classification system is confusing and in some cases too vague to be useful. The author points out inconsistencies at all levels including for the distinction of subgenera. According to her, abandoning subgenera wouldn't be the solution, and a new taxonomic approach is necessary to better appreciate the composition and organisation of the genus.

Sargassum Taxonomy, First Period (1820-1988)

In botany, even if several genera are divided into subgenera, there are only few taxa with sufficient species number to justify the use of inferior sub-divisions such as for example sections, subsections and series. In the case of Sargassum, the hundreds of taxa attributed to one subgenus are traditionally classified into sections, subsections, series and species groups, the latter having not taxonomic value according to the International Code of Botanical Nomenclature (ICBN, McNeill et al., 2006). The first sargasso species, originally attributed to the genus Fucus, were described by Linnaeus (1753) (F. natans Linnaeus, F. acinarium Linnaeus, F. lendigerus Linnaeus), then by Turner (1808, 1809, 1811) (36 species). The genus Sargassum was established by C. Agardh (1820), who was the first to lay the foundations of a new classification system for seaweeds. Sargassum represents the first genus listed in C. Agardh's order Fucoidae, and contains 62 species partitioned into seven unnamed groups recognizable by the following morphological characters: (i) axillary receptacles and whole leaves; (ii) axillary receptacles and pinnatifid leaves; (iii) vesicules and leaves of small size (Microphylla); (iv) terminal receptacles; (v) leafy vesicles, and spatulate and inflated leaves; (vi) axes flattened, pinnatifid and foliar, and axillary vesicles and receptacles; (vii) leaves without midribs, receptacles marginal and fixed to leaves, and solitary capsules in each tubercule. Later on, two of these groups were recognised as genera: Turbinaria Lamouroux (group iv) and Carpophyllum Greville (group vii). This classification was used by Montagne (1842, 1845) and Greville (1848, 1849). Nevertheless, Kutzing (1843, 1845) proposed a completely different classification system, maintaining only part of the species in the genus Sargassum (mainly those corresponding to J. Agardh (1889)'s S. series Malacocarpicae and Zygocarpicae according to Setchell 1931), and attributing the other part to the genera Carpacanthus Kutzing, Halochloa Kutzing, Pterocaulon Kutzing, Spongocarpus Kutzing and Stichophora Kutzing. J. Agardh (l 848) did not retain Kutzing's work and proposed a new classification composed of sections divided into 'tribus' (no taxonomic value according to ICBN) themselves divided into species groups which were organised according to morphological characters or a common geographical distribution. At this stage, the genus Sargassum contained three sections organised as follows:

(i) S. sect. Pterophycus J. Agardh with one tribus:

--tribus Pterocaulon (Kutzing) J. Agardh (type unknown);

(ii) S. sect. Arthrophycus J. Agardh with three tribus:

--tribus Schizophylla J. Agardh (type unknown),

--tribus Holophylla J. Agardh (type unknown),

--tribus Heterophylla J. Agardh (type: S. heterophyllum C. Agardh);

(iii) S. sect. Eusargassum with eigth tribus:

--tribus Carpophylla J. Agardh (type: S. carpophyllum J. Agardh),

--tribus Glandularia J. Agardh (type unknown),

--tribus Siliquosae J. Agardh (type: S. siliquosum J. Agardh),

--tribus Biserrulae J. Agardh (type: S. biserrula J. Agardh),

--tribus Acanthocarpa J. Agardh (type unknown),

--tribus Acinaria J. Agardh (type: S. acinaria C. Agardh),

--tribus Ligularia J. Agardh (type: S. ligulatum C. Agardh),

--tribus Cymosae J. Agardh (type: S. cymosum C. Agardh).

Later, J. Agardh (1889), following the basis of his 1848's classification, published the most complete classification and divided the genus Sargassum into five subgenera, themselves divided into several series, each sub-divided into 'tribus':

(i) S. subgen. Phyllotrichia (Areschoug) J. Agardh with five tribus:

--tribus Heteromorphae J. Agardh (type: S. heteromorphum J. Agardh),

--tribus Cladomorphae J. Agardh (type unknown),

--tribus Phyllomorphae J. Agardh (type unknown),

--tribus Pteromorphae (Kutzing ?) J. Agardh (type unknown),

--tribus Dimorphae J. Agardh (type unknown);

(ii) S. subgen. Schizophycus J. Agardh (type: S. patens C. Agardh) monospecific;

(iii) S. subgen. Bactrophycus J. Agardh (type unknown) with two unnamed species groups;

(iv) S. subgen. Arthrophycus J. Agardh (type S. heterophyllum C. Agardh) with two unnamed species groups;

(v) S. subgen. Eusargassum with three series:

--S. ser. Zygocarpicae (J. Agardh) Setchell with one tribus:

* tribus Carpophyllae J. Agardh (type: S. carpophyllum) with two unnamed species groups;

--S. ser. Acanthocarpicae J. Agardh with two tribus:

* tribus Glomerulatae J. Agardh (type unknown) with four unnamed species groups; * tribus Biserrulae J. Agardh (type: S. biserrula) with four named species groups:

# Ilicifolia (founding species: S. ilicifolium (Turner) C. Agardh),

# Coriifolia (founding species: S. coriifolium J. Agardh),

# Parvifolia (founding species: S. parvifolium (Turner) C. Agardh),

# Dentifolia (founding species: S. dentifolium (Turner) C. Agardh);

--S. ser. Malacocarpicae J. Agardh with three tribus:

* tribus Fruticuliferae J. Agardh (type unknown),

* tribus Cymosae J. Agardh (type: S. cymosum),

* tribus Racemosae J. Agardh divided into three 'sub-tribus':

--Acinariae (type: S. acinaria),

--Glandulariae (type unknown),

--Siliquosae (type: S. siliquosum).

In 1849, Kutzing described two supplementary genera: Anthophycus Kutzing and Platylobium Kutzing for Sargassum longifolium (Turner) C. Agardh (1820) and S. platylobium (Mertens) C. Agardh (1820), respectively. The J. Agardh (1848)'s classification was largely adopted by subsequent authors such as Grunow (1915, 1916a, b), Setchell (1931, 1933, 1935a, b, 1936, 1937) and Yoshida (1983), and was slightly modified till recently. The main modifications were those of Abbott et al. (1988), and Tseng and Lu (various works) who proposed a number of corrections to J. Agardh's classification, mainly to follow the Art.4.1 of the ICBN, by transferring the majority of series to the rank of section and 'tribus' to the rank of subsections. Certain species groups proposed by J. Agardh (1889) and Grunow (1915, 1916a, b) were transferred to the rank of series, and authors, including Tseng and Lu (various works) and Ajisaka et al. (1995), have defined several new species groups. Species groups are meant to cluster taxa a priori related but the ICBN do not recognize a taxonomic status for them. However according to Art.4.2, species groups may be used as supplementary ranks under subseries. According to Ajisaka et al. (1995), after thorough population study, a species group could be either elevated to a recognized rank or reduced to only one species, all members of the species groups being then considered as conspecific. A view of Sargassum classification at this stage is given in Appendix 1. More recently, studies using DNA markers have underlined the necessity to reassess the whole Sargassum classification.

Sargassum Taxonomy, Second Period (2000-2010): The Advent of DNA Phylogenies

Molecular analyses of DNA offer an alternate method to test taxonomic, systematic and phylogenic traditional concepts. In phycology, systematic studies using nucleic acids have apprehended phylogenies in a new way as soon as the 1980s (Olsen, 1990). Since then, numerous studies have demonstrated how useful DNA markers are to understand taxa's evolutionary history (Kooistra et al., 1992; Hoarau et al., 2007; Phillips et al., 2008a, b), and phylogenetic relationships (Kogame et al., 1999; Coyer et al., 2006; De Clerck et al., 2006), or resolve taxonomic ambiguities (Coyer et al., 2001; Hayden et al., 2003; Faye et al., 2004; Mattio et al., 2010). Regarding Phaeophyceae, the first complete phylogenies (Draisma et al., 2001; Rousseau et al., 2001) have confirmed the monophyly of the majority of orders whereas the Laminariales and Sphacelariales appeared as paraphyletic. The phylogeny of Fucales was explored by several authors using nuclear markers SSU and LSU (rDNA) (Rousseau et al., 1997; Rousseau & de Reviers, 1999) or chloroplastic psaA (Cho et al., 2007). These studies have pointed out the monophyly of Fucales as well the majority of families currently classified into this order, exception of Cystoseiraceae. Two new families have been proposed and the Cystoseiraceae were merged to the Sargassaceae. More recently, Draisma and Rousseau (2010) have proposed several significant revisions within the Sargassaceae using a combined analysis of psbA and mt23S. A considerable number of studies have been dedicated to Fucales and in particular to Fucus species which play a major role in European marine ecosystems (Wallace et al., 2004; Engel et al., 2005; Coyer et al., 2006; Oudot-Le Secq et al., 2006). However, only few authors take an active interest in Sargassum despite its ecological importance in inter-tropical regions and taxonomic significance.

The first authors to challenge the traditional classification and phylogenetic relationships in Sargassum using DNA markers were Phillips (1998), Phillips and Fredericq (2000), Phillips et al. (2005), Stiger et al. (2000, 2003), and Yoshida et al. (2000, 2002, 2004). These studies only led to few taxonomic revisions as markers for the ITS-2 region and the partial rbcLS-operon, used independently, showed poor taxon representation and limited interspecies resolution. Stiger et al. (2000, 2003) transferred S. sect. Phyllocystae from S. subgen. Bactrophycus to S. subgen. Sargassum and the genus Hizikia Okamura to section level within S. subgen. Bactrophycus. Yoshida et al. (2004) merged S. subgen. Schizophycus into S. subgen. Sargassum. These rearrangements provided strong evidence of the necessity to reassess taxonomic concepts within Sargassum. In more recent studies, combining detailed results provided by a three markers-DNA phylogeny analyses of morphology, and old herbarium collections including types, Mattio and Payri (2009) and Mattio et al. (2008, 2009, 2010) provided taxonomic clarifications of Sargassum diversity for South Pacific islands. The authors confirmed the polyphyletic nature of S. sect. Acanthocarpicae, re-assessed the status of numerous species, resolved several taxonomic incongruities, and provided an advanced revision of S. subgen. Sargassum's sections. A detailed review of each Sargassum subgenera is discussed hereafter.

Sargassum subgen. Phyllotrichia & Schizophycus

Phyllotrichia was described by Areschoug as a distinct genus [Areschoug, 1854: 332, type species: Phyllotrichia sonderi (J. Agardh) Areschoug, basionym: Cystoseira sonderi J. Agardh, 1848: 247] and was later considered as a subgenus of Sargassum by J. Agardh [1889: 35, type species: N sonderi (J. Agardh) J. Agardh]. J. Agardh (1889) further subdivided this subgenus into five 'tribus' mainly established based on differences in vesicles' shape: (i) Heteromorphae (2 specks), (ii) Cladomorphae (3 specks), (iii) Phyllomorphae (4 species), (iv) Pteromorphae (4 species) et (v) Dimorphae (2 species. Beside, Sargassum subgen. Schizophycus was originally described by J. Agardh (1848) as a 'tribus' of his section Arthrophycus and later elevated to subgenus rank (J. Agardh, 1889) containing only one species: S. patens J. Agardh.

In his revision of Australian species of S. subgen. Phyllotrichia, Womersley (1954) proposed that S. subgen. Schizophycus be merged to S. subgen. Phyllotrihia based on morphological evidences. The author further enumerates eigth Australian species of S. subgen. Phyllotrichia (S. decurrens (R. Brown ex Turner) C. Agardh S peronii, S. heteromotphum, S. sonderi S. deccipiens (R. Brown ex Turner) C. Agardh, S. howeanum Lucas, S. varians Sonder, et S. verruculosum C. Agardh), three East Asian species (S. piluliferum (Turner) C. Agardh, S. pinnatifidum Harvey, et S. patens), and one from Canary Islands (S. desfontainesii (Turner C. Agardh). Womersley (1954) also pointed out that the 'tribus' of J. Agardh were a source of confusion and should be avoided. Later, Goldberg and Huisman (2004) described a new S. subgen. Phyllotrichia species: S. kendrickii N. A. Goldberg et Huisman, while five species were transferred to S. subgen. Sargassum: S. desfontainesii (DiazVilla et al., 2007), S. howeanum (Goldberg & Huisman, 2004) S. piluliferum and S. pawns (Stiger et al., 2003), and S. pinnatifidum (along with three other ex-S. subgen. Schizophycus species, Yoshida et al., 2004). Finaly Draisma and Rousseau (2010), using molecular markers and a large Sargassaceae dataset, demonstrated that S. decurrens (= S. scabripes J. Agardh and S. boryi C. Agardh) shoed be placed back in Sargassopsis Trevisan (1843: 332) (not Sargassopsis Nizamuddin et al., 1993i of which it should be considered the type species. The authors recommend a thorough reason before other N subgen. Phyllotrichia specks may be transferred to Sargassopsis. All these taxonomic changes point out the necessity for a reevaluation of the species traditionally ascribed to S. subgen. Phyllotrichia as well as the morphological characters used to characterize this subgenus. Currently, only seven specks should be attributed to S. subgen. Phyllotrichia: S. peronii, S. heteromorphum, S. sonderi, S. decipiens, S. varians, S. verruculosum, and S. kendrickii.

Sargassum subgen. Bactrophycus & Arthrophycus

Sargassum subgen. Bactrophycus was described by J. Agardh (1889) based on 14 species distributed in four morphological groups mainly defined by the organisation of axis and the shape of vesicles. This subgenus was studied in detail by Yoshida (1983, 1989a) and Tseng et al. (1985), and S. horneri was designated as type of S. subgen. Bactrophycus (Yoshida, 1983). Sargassum subgen. Bactrophycus currently contains 35 taxa including 22 species and one variety endemic to Japan. These taxa were divided into four sections by Yoshida (1983): S. sect. Halochloa (Kutzing) Yoshida, S. sect. Repentia Yoshida, S. sect. Spongocarpus (Kutzing) Yoshida and S. sect. Teretia Yoshida. Tseng (1985) described a fifth section: S. sect. Phyllocystae Tseng to classify species with phyllocysts. Later, based on molecular studies, Stiger et al. (2000, 2003) proposed to transfer S. sect Phyllocystae from S. subgen. Bactrophycus to S. subgen. Sargassum, as well as the reinstatement of S. fusiforme (Harvey) Setchell (= Hizikia fusiformis (Harvey) Okamura) to be placed in a new section: S. sect. Hizikia (Okamura) Yoshida.

Sargassum subgen. Arthrophycus was described by J. Agardh (1889) based on 20 species distributed into four morphological groups mainly distinguished on the shape of receptacles. According to Yoshida (1989b), no type species has ever been designated for the subgenus. The basionym of S. subgen. Arthrophycus is S. sect. Arthrophycus which was divided into three 'tribus': Schizophylla, Holophylla and Heterophylla (J. Agardh, 1848). Only eigth species of 'tribus' Heterophylla were transferred by J. Agardh (1889) to S. subgen. Arthrophycus. The other two 'tribus' were respectively transferred to S. subgen. Schizophycus and Bactrophycus (J. Agardh, 1889). In this context, we propose to consider S. heterophyllum (nomen typificatum for 'tribus Heterophylla ') as the type species of S. subgen. Arthrophycus. In a general trend, S. subgen. Arthrophycus is badly known and only sequences for two species are currently available on GenBank (S. fallax Sonder, partial Rubisco, Phillips & Fredericq, 2000--S. sinclairii J. D. Hooker et Harvey, ITS-2, Mattio & Payri, 2009). Lindauer et al. (1961) listed three taxa belonging to S. subgen. Arthrophycus in New Zealand: S. sinclairii, S. undulatum J. Agardh and S. undulatum f. serratifolium Lindauer. However, according to Adams (1994) the two latter should be considered as synonyms of S. sinclairii which is the most common Sargassum species in New Zealand. According to Womersley (1987), five species of S. subgen. Arthrophycus are common along the coast of Australia. These studies appear to be ones of the rare works undertaken about this subgenus.

Sargassum subgen. Bactrophycus and Arthrophycus are morphologically close and distinguished only by the shape of receptacles and their distinct geographical distribution. Hence, S. subgen. Arthrophycus is distinguished from S. subgen. Bactrophycus by the presence of compound receptacles (Yoshida, 1983), and according to Setchell (1931), species of S. subgen. Arthrophycus are exclusively found in the southern hemisphere along the coast of Australia, Tasmania, New Zealand and South Africa. Nevertheless, Setchell (1933) attributed two species from Hong-Kong (S. mcclurei Setchell, S. herklotsii Setchell) to S. subgen. Arthrophycus. Yoshida (1983, 1989b) prefers to consider that this subgenus is only distributed in the southern hemisphere while S. subgen. Bactrophycus is restricted to the northern hemisphere, mainly in the East Asian region.

Analyses of the nuclear ITS-2 marker were carried out for 26 species of S. subgen. Bactrophycus (available on GenBank from Stiger et al., 2000, 2003) and one species of S. subgen. Arthrophycus (S. sinclairii, available on GenBank from Mattio & Payri, 2009). Results (Appendix 2) demonstrate a low genetic polymorphism between members of the S. sect. Halochloa and Repentia suggesting that both taxa should be considered as only one section. Based on the same results, Stiger et al. (2003) interpreted the low genetic polymorphism to a recent radiation of both sections. However, because sequences for both section's type (respectively S. siliquosum and S. okamurae, see Appendix 2 table) are identical, we propose to merge S. sect. Repentia Yoshida into S. sect. Halochloa (Kutzing) Yoshida. Results of the ITS-2 analysis also show the clustering of sequences available for S. sinclairii from New Zealand with the Halochloa/Repentia clade. Consequently, we propose the transfer of S. sinclairii from S. subgen. Arthrophycus to S. subgen. Bactrophycus. The geographical distribution of S. subgen. Bactrophycus should not anymore be considered as restricted to the Northern hemisphere. The study of further markers and samples of S. subgen. Arthrophycus, especially for the type species S. heterophyllum, should provide us with a revised view of S. subgen. Arthrophycus and Bactrophycus.

Sargassum subgen. Sargassum

Sargassum sect. Sargassum (75 species subdivided in eigth 'tribus') was elevated to subgenus rank by J. Agardh (1889) who subdivided it into three series: Zygocarpicae, Malacocarpicae and Acanthocarpicae (95 species in total). Series were later elevated to sectional rank (Setchell, 1935b; Abbott et al., 1988) and subdivided into subsections, series and species groups (cf. Appendix 1). The traditional identification of S. subgen. Sargassum's sections is exclusively based on the morphology of receptacles. Sargassum sect. Acanthocarpicae is conventionally recognized on the basis of flattened and spiny receptacles arranged in dense glomerules (S. subsect. Glomerulatae) or racemes (S. subsect. Biserrulae), and possibly exhibiting malacocarpic male receptacles (S. subsect. Biserrulae ser. Plagiophyllae). Sargassum sect. Zygocarpicae is conventionally identified by 'mixed' receptacles (ie. receptacles associated to small leaves and/or vesicles) which pedicels may be absent and only associated with leaves or with leaves and vesicles (S. subsect. Holozygocarpicae) or which pedicels are often present and only associated with leaves or only with vesicles (S. subsect. Pseudozygocarpicae). Sargassum sect. Malacocarpicae is traditionally recognized by the presence of smooth and cylindrical receptacles which may be arranged in cymes brush-like and pedicelate (S. subsect. Fruticuliferae), in fascicules and branched (S. subsect. Cymosae), or arranged in racemes with branches supported by a sterile pedicel (S. subsect. Racemosae) (Appendix 1). This system of classification was accepted by the majority of the authors but because in practice it is based on very slight variations of receptacles' morphology, it has been used by few of them.

Recently, Norris (2010) published four new sections of S. subgen. Sargassum according to four morphological groups described by Dawson (1944): S. sect. Johnstonii E. Y. Dawson ex J. N. Norris, S. sect. Lapazeanum E. Y. Dawson ex J. N. Norris, S. sect. Sinicola E. Y. Dawson ex J. N. Norris and S. Herporhizum E. Y. Dawson ex J. N. Norris. These four sections are mainly identified on the morphology of leaves, vesicles and/or attachment type.

With the advent of DNA markers in Sargassum taxonomy, several revisions have been proposed for S. subgen. Sargassum. Stiger et al. (2000) proposed the transfer of S. sect. Phyllocystae from S. subgen. Bactrophycus to S. subgen. Sargassum based on ITS-2 sequences analysis of S. mcclurei and S. quinhonense Nguyen Huu Dai. However, Mattio et al. (2010) underlined that the effective transfer of the section should await confirmation by an analysis of the sequences for the section's type (S. phyllocystum Tseng et Lu). Using combined analyses of nuclear ITS-2, chloroplastic partial Rubiso and mitochondrial cox3 markers, Mattio et al. (2009, 2010) have: (i) described S. sect. Polycystae Mattio et Payri. to fit species with stolon-like branches; (ii) synonymised S. sect. Malacocarpicae and Acanthocarpicae to the autonymous S. sect. Sargassum; and (iii) elevated S. ser. Binderiana Tseng et Lu and S. ser. llicifolia (J. Agardh) Tseng et Lu to sectional rank and emended their descriptions according to new sets of morphological characters to accommodate species with respectively cylindrical to slightly compressed axes possibly twisted, alternately and spirally arranged, and strongly flattened axes distichously arranged in one plan.

For the purpose of the present work, analyses of the nuclear ITS-2 marker (Appendix 3) were carried out for 19 taxa of S. sect. Sargassum (available on GenBank from Stiger et al. 2000, 2003; Mattio & Payri, 2009; Mattio et al., 2008, 2009). Results show six well sustained clades, five of them representing S. sect. Sargassum, Zygocarpicae, Polycystae, Binderiana and Ilicifolia. One clade, clustering sequences for S. piluliferum and S. yendoi Okamura et Yamada, form a sister group to the clade representing S. sect. Sargassum. These results are similar to those of Stiger et al. (2003) but the low representation of S. sect. Sargassum (two species) in their work did not allow the authors to interpret this clade as a distinct group from S. sect. Sargassum. Similarly using partial Rubisco marker, Mattio et al. (2010) showed S. platycarpum Montagne as a sister group to S. sect. Sargassum and Zygocarpicae and raised the hypothesis of a new section to be elevated from S. ser. Platycarpae. The hypothesis of a sixth section to fit S. piluliferum--and S. yendoi-like species and a seventh section to fit S. platycarpum-like species need to be confirmed with the help of further markers and morphological analysis. Similarly, we recommend that the four sections published by Norris (2010) (S. sect. Johnstonii, sect. Lapazeanum, sect. Sinicola, and sect. Herporhizum) be assessed with DNA markers and diagnostic morphological characters be revised. Actually, the three species classified within S. sect. Herporhizum (S. herporhizum Setchell et N. L. Gardner, S. brandegeei Setchell et N. L. Gardner, and S. liebmannii J. Agardh) exhibit stolon-like branches arising from a discoid holdfast which is a diagnostic character of S. sect. Polycystae. The examination of S. herporhizum syntypes (UC 484236, 484241, 484252, 484253) confirmed that S. sect. Herporhizum should be considered as a synonym of S. sect. Polycystae.

Sargassum subgen. Sargassum assorts the majority of the genus' species but is it is difficult to estimate an accurate species number. If we consider the current genus species number (344) given by Guiry and Guiry (2010), and the species number estimated for other subgenera from the above discussions (S. subgen. Phyllotrichia= 7; S. subgen. Bactrophycus=27; S. subgen. Arthrophycus=about 20), the number of S. subgen. Sargassum species could be around 300. This number may be largely overestimated considering the numerous possible synonym epithets which have not yet been proposed. Actually, recent studies have demonstrated that the current species diversity as listed by Guiry and Guiry (2010) is wider than the existing diversity in the field. As an example, latest works by Mattio and collaborators (2008, 2009, 2010) pointed out 47 new synonymies and underlined numerous misidentifications thus reducing the 67 epithets listed in the literature for South Pacific Islands to 14 taxa (20%). By the transfer of S. decurrens to the reinstated genus Sargassopsis, Draisma and Rousseau (2010) further reduced this number to 13 species (Table 1). These works are based on the analysis of types corresponding to 103 taxa, relevant original diagnoses, vouchers listed in the literature and new extensive collections from worldwide localities. It must be noted here that Guiry and Guiry (2010)'s list does not encompass all existing Sargassum's taxon names (species, varieties and formas; pers. obs.) which renders the estimation of Sargassum taxa number even more uncertain.

Conclusion, Perspectives and Recommendations

Currently, Sargassum is divided into four subgenera (S. subgen. Sargassum, Bactrophycus, Arthrophycus and Phyllotrichia). However, new insights have led to the hypothesis that S. subgen. Arthrophycus could be merged to S. subgen. Bactrophycus, and that S. subgen. Phyllotrichia could be transferred to the reinstated genus Sargassopsis. These hypothesis need to be tested implementing studies based on a larger sampling, including the type species for these subdivisions. Beside, only S. subgen. Bactrophycus, and S. subgen. Sargassum are subdivided into sections. In this paper, we propose that two sections of the S. subgen. Bactrophycus: S. sect. Halochloa and Repentia be merged, thus reducing the number of S. subgen. Bactrophycus sections from five to four (S. sect. Halochloa, Hizikia, Spongocarpus, and Teretia). The subdivisions of S. subgen. Sargassum were considerably simplified since its establishment by J. Agardh (1889), all below-section ranks have been abandoned and traditional sections have been significantly revised. The subgenus is now currently subdivided into eight sections: S. sect. Sargassum, Zygocarpicae, Polycystae, Ilicifolia, Binderiana, Johnstonii, Lapazaenum, and Sinicola. The last three sections as well as two possible new ones need to be assessed further. A summary of the actual classification is given in Fig. 4 and Appendix 4 along with an identification key for Sargassum subdivisions in Table 2.

Phylogenetic methods have become routinely used in systematic. According to Stuessy and Konig (2008), the main roles of these methods are: (i) only synapomorphies are important for the discrimination of a phylogenetic tree's branches, (ii) only monophyletic groups are acceptable, (iii) the classification must only be based on topologic patterns, and (iv) sister clades should be of same rank. DNA markers used recently in the study of Sargassum (ITS-2, partial Rubisco, cox3, 23S) have led to significant new insights on the genus' phylogeny and allowed reconsidering the taxonomic placement of several entities. Notably, they confirmed the monophyly of S. subgen. Sargassum and detected the polyphyly of several of its subdivisions (S. sect. Zygocarpicae and Acanthocarpicae) thus pointing out to the incongruity of morphological characters traditionally used to define them. Several new sections have been proposed and part of the genus has been revised according to a simplified scheme (Fig. 4, Table 2, Appendix 4).

The efficiency of traditional morphological characters used to differentiate taxa (subgenera, sections or infrageneric taxonomic ranks) has been questioned, and the consideration of these characters, one by one, showed few synapomorphies (Mattio et al., 2010). Molecular phylogenies are not based on morphological characters; it is thus not surprising that they cluster taxa, originally classified in groups considered as morphologically homogeneous into different clades. For example, S. sect. Acanthocarpicae, which was traditionally identified on 'spiny' receptacles, appeared as polyphyletic (Mattio et al., 2010). In this case, the appendices traditionally named 'spines' are probably from different ontogenic origin. Thus, the 'spines' of S. hystrix (S. sect. Sargassum) are different from that of S. aquifolium (S. sect. Binderiana) or S. ilicifolium (S. sect. Ilicifolia). In the first one, they appear as extensions on the surface of receptacles, thin and linear like a 'hair', whereas in the latter two the receptacle's margin is dented. These expansions of different types, and probably different origins, had been interpreted as the same character named 'spine' leading previous authors to classify S. hystrix and S. ilicifolium within the same section (S. sect. Acanthocarpicae). Similar situations may be encountered for other Sargassum infrageneric groups.

[FIGURE 4 OMITTED]

To overcome these difficulties and to progress toward a simplified taxonomy, more representative of the real diversity of the genus, we recommend that the genus be drastically revised following a two-pronged approach: first, the revision of the species diversity carried out by geographical region and second, the revision of the classification.

The species diversity may be re-evaluated through a four step taxonomic revision approach including:

(i) An alpha-taxonomic study of the specimens based on morphological characters of traditional taxonomic value (see section Morphology of this paper) to distinguish morphotypes. Morphotypes are considered as groups of morphologically similar specimens, showing characters included within a morphological range which may represent a taxonomic entity corresponding to a species or an inferior taxonomic rank. The morphological range is defined according to the polymorphism of the specimens of interest as observed at intra-individual, and intra and inter-population levels taking into account as much as possible the ontogenic and phenotypic variability for various worldwide localities.

(ii) An analysis of at least three DNA markers for which comparative data are available in the literature and on GenBank, in the case of Sargassum: the nuclear ITS-2, the chloroplastic partial Rubisco and the mitochondrial cox3. Supplementary and more variable markers need to be assessed for discriminating the closely-related species of S. sect. Sargassum. Draisma and Rousseau (2010) underlined that the mitochondrial spacer proposed by Coyer et al.

(2006) could be used as DNA barcode marker in Sargassum. However, its usefulness has yet to be tested. (iii) A comparison of morphological and DNA data. The aim is to test the monophyly of morphotypes defined above, the taxonomic value of morphological characters used to define them, and the subjectivity linked to the interpretation of these characters' variability. Two results may arise: either morphotypes are congruent with clades or not. In the latter case, the morphotype may be poly- or paraphyletic, or several morphotypes may be found within the same clade. If the morphotype is poly- or paraphyletic, going back to the morphological observations may help to identify new morphological characters which taxonomic informativeness was not suspected, or morphological variations were misinterpreted as intra-specific polymorphism. If several morphotypes are found within the same clade, either the morphological variations were wrongly interpreted as inter-specific differences or the DNA marker(s) used is (are) not variable enough to discriminate the morphologically well differentiated morphotypes. The main limit encountered when using above listed markers is the lack, even the absence, of variability in sequences obtained for S. sect. Sargassum taxa yet discriminated based on well established morphological differences. This lack of variability has been interpreted as the mark of recent radiation (Mattio et al., 2008; Mattio & Payri, 2009), but more variable markers have to be explored to test this hypothesis. It is important to note that if the DNA analysis cannot a priori replace a traditional taxonomic study, it may put forward inconsistencies in the interpretation of morphological characters and thus represents a supplementary taxonomic character to be considered for species delineation.

(iv) Finally, a first identification of morphotypes may be done with data from local literature (identification keys, Floras, and phylogenies) which would have to be confirmed through the careful study of original diagnoses and types (loan or visit to herbaria) for the suspected species. A comparison of morphology and DNA sequences with specimens from the type locality is recommended. If several names can be applied to the same morphotype, and only after effective examination of types, the taxon earliest published would be considered as the current name while the other epithet(s) may be proposed as heterotypic synonym(s) (Art. 11.4, ICBN).

The classification may be re-evaluated by testing the following nul hypothesis: "the traditional classification is similar to the phylogenetic classification". If the nul hypothesis is accepted it is then possible to be confident with the traditional classification. If the nul hypothesis is rejected, it is necessary to understand why the traditional classification is different from the phylogenetic classification and how to adapt it (or revise it) to find consistency between the two. One of the main source of inconsistency is of topologic order, ie. the arrangement of taxa in the traditional and phylogenetic classifications are different. The most frequent case is that of non-monophyly of traditional taxa: a taxon may be either polyphyletic or paraphyletic.

(i) If a section (or another infrageneric entity) is paraphyletic (ie. it doesn't include all taxonomic entities found in the relevant clade), the relevant taxa may be transferred from the section, within which they are traditionally classified, to that indicated by phylogenetic analyses. A second option may be to merge the sections which taxonomic entities form a single clade.

(ii) If a section is polyphyletic, ie. taxonomic entities traditionally attributed to this section are found in two (or more) distinct clades, only taxa grouped in the same clade as the type for the section should be considered as part of the section. Taxa found in a different clade may be either transferred to the section corresponding to the relevant clade or attributed to a new section.

In both instances, when amending or describing a section, it is necessary to know (i) the position of the section's type which will ascertain the clade corresponding to the section(s) of interest (Art. 7 & 10 ICBN), (ii) the anteriority of taxa which will determine the epithet to be conserved when merging two taxonomic groups (Art. 11.4 & 11.5 ICBN), and (iii) the diagnostic characters of the group.

DOI 10.1007/s12229-010-9060-x

Appendix 1
Table 5 Bibliographic synthesis of the Sargassum
classification before the advent of molecular analyses; key
morphological characters and type species as compiled from
J. Agardh (1848, 1889), Womersley (1954), Yoshida (1983,
1989a, b), Abbott et al. (1988), Tseng and Lu (1988, 1992a,
b, 1995a, b, c, 1997a, b, 1999, 2002a, b, c, d); the list of
species in each subdivision is non exhaustive

Taxonomic          Epithet            Key morphological
rank                                  characters

Genus              Sargassum C.       Specialized branch
                   Agardh             system (axes,
                                      branches); only one
                                      egg per oogone;
                                      three-sided apical
                                      cell.

I. subgenus        Phvllotrichia      Primary branches
                   (Aresch.) J.       emerging from the
                   Agardh             stem or main axis as
                                      'foliar expansions',
                                      which are pinnatifid
                                      and usually
                                      flattened below, but
                                      may become
                                      cylindrical above
                                      where they bear
                                      vesicles and
                                      receptacles;
                                      vesicles essentially
                                      without terminal
                                      outgrowth.

II. subgenus       Bactrophvcus J.    Branch bicuspid or
                   Agardh             angulate; leaves
                                      retroflex and
                                      perpendicular to
                                      branches; simple
                                      axillary or terminal
                                      receptacles;
                                      distributed only in
                                      the northern
                                      hemisphere.

II.I. sectio       Spongocarpas       Stem erect,
                   (Kutzing)          elongated; branches
                   Yoshida            always arising in
                                      axils of leaves and
                                      shorter in length
                                      that the stem;
                                      receptacles terete
                                      and siliquaeform

II.2. sectio       Teretia Yoshida    Main axis shorter or
                                      longer; primary axis
                                      angular; secondary
                                      axis always shorter
                                      than primary axis;
                                      receptacles
                                      cylindrical

II.3. sectio       Halochloa          Main axis upright
                   (Kutzing)          and short; primary
                   Yoshida            axes bicuspid to
                                      tricuspid; secondary
                                      axis always shorter
                                      than primary axis;
                                      basal leaves
                                      retroflex;
                                      receptacles
                                      flattened or
                                      triqueterous with
                                      smooth or serrulate
                                      margins.

II.4. sectio       Repentia           Main axis procumbent
                   Yoshida            or decumbent forming
                                      secondary haptera on
                                      the ventral face;
                                      primary axes
                                      branched on the
                                      dorsal face of main
                                      axis; receptacles
                                      compressed to
                                      flattened.

III. subgenus      Arthrophycus J.    Branch bicuspid or
                   Agardh             angulate; leaves
                                      retroflex and
                                      perpendicular to
                                      branches; compound
                                      receptacles;
                                      distributed only in
                                      the Southern
                                      hemisphere

IV. subgenus       Sargassum          Axis cylindrical
                                      compressed or
                                      flattened (not
                                      leaf-like); leaves
                                      parallel to axis and
                                      rarely retroflex;
                                      vesicles arising
                                      from the distal
                                      portion of leaves;
                                      receptacles
                                      compound, smooth or
                                      bearing spine-like
                                      protuberances

IV.1. section      Zygocarpicae       Receptacles
                   (J. Agardh)        associated to leaves
                   Setchell           and/or vesicles.

IV. 1.1.           Holozygocarpicae   Receptacles with
subsectio          Setchell           pedicel that may be
                                      absent, associated
                                      only with leaves or
                                      both with leaves and
                                      vesicles.

IV.1.1.1. series   Carpophyllae       Missing information
                   (J. Agardh ex
                   Setchell)
                   Abbott et al.

IV.1.1.1.1.        Carpophyllae J.    Receptacles
groupe             Agardh             bisexual,
d'espece                              cylindrical to
                                      fusiform, smooth or
                                      with a few spines.

IV.1.1.1.2.        Tenerrima          Receptacles
species group      Setchell           bisexual, compressed
                                      to triqueterous,
                                      bearing spines at
                                      the apex.

Taxonomic          Epithet            Key morphological
rank                                  characters

IV.1.1.1.3.        Longiti-ttcta      Receptacles
species group      Tseng et Lu        unisexual, male and
                                      female receptacles
                                      cylindrical, smooth
                                      or with few spines.

IV.1.1.1.4.        Tenuia Setchell    Receptacles
species group                         unisexual, male
                                      receptacles
                                      cylindrical and
                                      smooth, female
                                      receptacles
                                      compressed to
                                      triqueterous with
                                      spines.

IV 1.1.1.5.        rietnamensa        Receptacles
species group      Ajisaka            unisexual, male and
                                      female receptacles
                                      compressed to
                                      triqueterous,
                                      bearing spines.

IV. 1.2.           Pseudoz            Receptacles often
subsectio          Vgocarpicae        pedicelate,
                   Setchell           associated only with
                                      leaves or vesicles.

IV.1.2.1. series   Cinerea Tseng      Receptacles
                   et Lu              unisexual; thallus
                                      ash-grey.

IV.1.2.1.1.        Vachelliana        Receptacles
species group      Setchell           unisexual, male and
                                      female receptacles
                                      cylindrical to
                                      fursiform smooth or
                                      with few spines.

IV1.2.1.2.         Incana Ajisaka     Receptacles
species group                         bisexual,
                                      cylindrical to
                                      fusiform, smooth or
                                      with a few spines.

IV 1.2.1.3.        Cinerea            Receptacles
species group      Setchell           unisexual, male
                                      receptacles
                                      cylindrical smooth
                                      or with spines,
                                      female receptacles
                                      compressed with
                                      spines.

IV. 1.2.1.4.       Denticarpa         Receptacles
species group      Ajisaka            bisexual, compressed
                                      to triqueterous with
                                      spines.

IV2. settio        Acanthocarpicae    Receptacles
                   (J. Agardh)        flattened with
                   Abbott et al.      spines.

IV.2.1.            Glomerulatae       Receptacles
subsectio          (J. Agardh)        bisexual, flattened,
                   Tseng et Lu        arranged in dense
                                      glomerules.

IV2.1.1. series    Binderiana         Distichous axis,
                   (Grunow) Tseng     compressed to
                   et Lu              flattened.

IV2.1.1.1.         Swartziia          Vesicles ellipsoidal
species group                         and apieulate, with
                                      flattened pedicels
                                      longer than
                                      vesicles.

IV2.1.1.2.         Binderia           Vesicles spherical,
species group                         with pedicels
                                      generally longer
                                      than or as long as
                                      the vesicles.

IV2.1.2. series    Platycarpae        Apical part of axis
                   (Grunow) Tseng     multiple, filiform
                   et Lu              or subcylindrical.

IV2.2.             Biserrulae (J.     Receptacles uni- or
subsectio          Agardh) Tseng      bisexual arranged in
                   et Lu              racemes.

IV 2.2.1. series   Plagiophyllae      Receptacles
                   Tseng et Lu        unisexual, female
                                      receptacles
                                      acanthocarpic, male
                                      receptacles
                                      malacocarpic.

IV.2.2.1.1         Plagiophylla       Holdfast discoid.
species group

IV2.2.1.2.         Rhizophora         Holdfast rhizoidal.
species group

IV2.2.2. series    Illicifoliae       Receptacles
                   (J. Agardh)        unisexual, male and
                                      female receptacles

Taxonomic          Epithet            Key morphological
rank               Tseng et Lu        characters
                                      acanthocarpic; basis
                                      of leaves
                                      asymmetrical,
                                      internal margin
                                      smooth or slightly
                                      semrlate, external
                                      margin distinctly
                                      dentate.

IV.2.2.3. series   Odontocarpicae     Receptacles
                   Tseng et Lu        bisexual; leaves
                                      lanceolate to linear
                                      often with an
                                      asyrrunetrical
                                      basis.

IV.3. settio       Malacocarpicae     Receptacles
                   (J. Agardh)        cylindrical, smooth,
                   Abbott et al.      arranged in cymes or
                                      racemes.

IV3.1.             Fruticuliferae     Receptacles brush
subsectio          (J. Agardh)        like, arranged in
                   Tseng et Lu        cymes, pedicelate
                                      and without sterile
                                      parts.

IV.3.2.            Cymosae (J.        Receptacles
subsectio          Agardh) Tseng      branched, arranged
                   et Lu              in cymes, ramuli
                                      arranged in groups
                                      of fascicules, with
                                      acuminate apex.

IV3.3.             Racemosae (J.      Receptacles arranged
subsectio          Agardh) Tseng      in racemes, with
                   et Lu              sterile pedicels.

IV3.3.1. series    Acinariae J.       Receptacles
                   Agardh             lanceolate to
                                      conical, with short
                                      fertile and axial
                                      ramuli.

IV3.3.2. series    Glandulariae J.    Receptacles with
                   Agardh             short, axial and
                                      glandular ramuli.

IV3.3.3. series    Siliquosae J.      Receptacles with
                   Agardh             long and pedicelate
                                      ramuli, cylindrical
                                      siliquaeform,
                                      pinched in some
                                      points, alternate
                                      position on axis.

IV4. settio        Phyllocystae       Modified leaves
                   Tseng              characterised by a
                                      central inflated
                                      part
                                      (Phyllocysts):
                                      receptacles
                                      bisexual, generally
                                      compound and
                                      arranges in short
                                      racemes, female
                                      receptacles
                                      flattened or
                                      triqueterous,
                                      generally dentate.

Incertae sedis     Schizophycus J.    Primary axis arising
                   Agardh             from foliar
                                      expansions; leaves
                                      and axis developed
                                      in the same plan;
                                      vesicles bearing a
                                      coronal leaf.


Appendix 2

ITS-2 analyses based on the alignment of 31 GenBank sequences available for species of S. subgen. Bactrophycus and Arthrophycus

[ILLUSTRATION OMITTED]

Neighbour-Joining (NJ) analysis based on 31 GenBank sequences, 475 pb-long (including gaps), representing 27 taxa of S. subgen. Bactrophycus and Arthrophycus.

Bootstrap values are indicated for NJ/MP(Maximum Parsimony)/ML(Maximum Likelihood) when above 60% and were based on 1000 (NJ/MP) or 100 (ML, GTR+ G+I) replicates. Root: Turbinaria ornata. JP: Japan, NZ: New Zealand. The number of identical sequences is indicated between brackets when relevant and detailed the table below. * S. sinclairii is traditionally classified in S. subgen. Arthrophycus.
List of identical sequences not shown on the tree

References on the tree Identical sequences not on tree

References     Identical sequences not on tree
on the tree

AB043106 S.    AB043575 S. autiannale
siliquastrum   AB043574 S. macrocarpum
               AB043610 S. micracanthum
               AB043609 S. micracanthum
               AB043578 S. okamurae
               AB043579 S. okanmrae
               AB043612 S. serratifolium
               AB043568 S. trichopkyllum
               AB043107 S. yamamotoi
               AB043611 S. vesoense

AB038271       AB038273 S. microceratium
S. confusum


Appendix 3

ITS-2 analyses based on the alignment of 33 GenBank sequences available for species of S. subgen. Sargassum.

[ILLUSTRATION OMITTED]

Neighbour-Joining (NJ) analysis based on 33 GeneBank sequences, 475 pb-long (including gaps), representing 19 taxa of S. subgen. Sargassum. Bootstrap values are indicated for NJ/MP (Maximum Parsimony)/ML (Maximum Likelihood) when above 60% and were based on 1000 (NJ/MP) or 100 (ML, GTR+G+I) replicates. Root: Turbinaria ornata. FJ: Fiji Islands, FP: French Polynesia, HI: Hawaii, JP: Japan, M: Malaysia, NC: New Caledonia, S: the Solomon Islands, Va: Vanuatu, V: Vietnam.

Appendix 4
Table 6 Synthesis of the Current Sargassum classification;
key morphological characters; details of type species;
example of species for each subdivision (non exhaustive
list); compiled from J. Agardh (1848, 1889), Womersley
(1954), Yoshida (1983, 1989x, b), Abbott et al. (1988),
Tseng and Lu (1988, 1992x, b, 1995x, b, c, 1997x, b, 1999,
2002x, b, c, d), Stiger et al. (2003), Mattio and Payri
(2009), Mattio et al. (2009, 2010), Norris (2010)

Taxonomic       Epithet                Key morphological
rank                                   characters

Genus           Sargassum C. Agardh    Specialized branch
                                       system (axes,
                                       branches); only one
                                       egg per oogone;
                                       three-sided apical
                                       cell.

I. subgenus     Arthrophvcus J.        Branch bicuspid or
                Agardh (3)             angulate; leaves
                                       retroflex and
                                       perpendicular to
                                       branches; compound
                                       receptacles;
                                       distributed only in
                                       the Southern
                                       hemisphere.

II. subgenus    Bactrophvcus J.        Branch bicuspid or
                Agardh                 angulate; leaves
                                       retrotlex and
                                       perpendicular to
                                       branches; simple
                                       axial or terminal
                                       receptacles;
                                       distributed only in
                                       the northern
                                       hemisphere.

II.1. settio    Halochloa (Kiitzing)   Main axis either
                Yoshida                upright and short;
                                       primary axis
                                       bicuspid to
                                       tricuspid; secondary
                                       axis always shorter
                                       than primary axis;
                                       basal leaves
                                       retroflex;
                                       receptacles
                                       flattened or
                                       triqueterous with
                                       smooth or serrulate
                                       margins. NB. this
                                       description needs
                                       revision with regard
                                       to the fusion of S.
                                       sect.

                                       Repentia: main axis
                                       procumbent or
                                       decumbent, forming
                                       secondary haptera on
                                       the ventral face;
                                       primary axis arising
                                       from the dorsal
                                       face; receptacles
                                       compressed to
                                       flattened.

II.2. sectio    Hizikia (Okam.)        Holdfast with
                Yoshida                creeping rhizomatous
                                       outgrowth; stem
                                       short; leaves
                                       cylindrical to
                                       compressed linear,
                                       with marginal teeth;
                                       vesicle fusiform;
                                       receptacles short,
                                       cylindrical,
                                       aggregated in axil
                                       of leaf.

II.3. sectio    Spongocarpus           Stem erect,
                (Kdtzing) Yoshida      elongated; branches
                                       always arising in
                                       axils of leaves and
                                       shorter in length
                                       that the stem;
                                       receptacles terete
                                       and siliquaeform.

II.4. sectio    Teretia Yoshida        Main axis shorter or
                                       longer; primary axis
                                       angular; secondary
                                       axis always shorter
                                       than primary axis;
                                       receptacles
                                       cylindrical.

III. subgenus   Sargassum              Axis cylindrical
                                       compressed or
                                       flattened (not
                                       leaf-like); leaves
                                       parallel to axis and
                                       rarely retroflex;
                                       vesicles arising
                                       from the distal
                                       portion of leaves;
                                       receptacles
                                       compound, smooth or
                                       bearing spine-like
                                       protuberances.

IV. 1. sectio   Binderiana (Grunow)    Strongly flattened
                Mattio et al.          axes distichously
                                       arranged in one
                                       plan; elongated
                                       spatulate leaves
                                       with attenuated

Taxonomic       Epithet                Key morphological
rank                                   characters base,
                                       cryptostomata thin
                                       to large, mostly
                                       aligned on each side
                                       of the midrib, and
                                       dentate margins;
                                       vesicles supported
                                       by a long pedicel,
                                       spherical to
                                       obovoid, smooth or
                                       with a short mutro,
                                       a foliar appendage
                                       or crown, or
                                       differentiated into
                                       phyllocysts;
                                       receptacles mostly
                                       bisexual, with
                                       serrate margins and
                                       arranged in dense
                                       cymose glomerules.

IV.2. settio    Ilicifolia (J.         Cylindrical to
                Agardh) Mattio et      slightly compressed
                al.                    axes possibly
                                       twisted, alternately
                                       and spirally
                                       arranged; broadly
                                       spatulate leaves
                                       with cuneate or
                                       rounded unequal
                                       base, cryptostomata
                                       thin, numerous,
                                       dispersed, rarely
                                       aligned, and serrate
                                       to dentate margins;
                                       vesicles supported
                                       by a short pedicel,
                                       spherical to
                                       obovoid, smooth,
                                       with an ear-like or
                                       simple spine-like
                                       mutro; receptacles
                                       bearing spine-like
                                       protuberances,
                                       mostly unisexual and
                                       showing a
                                       male/female
                                       dimorphism.

IV.3. settio    Pohvcystae Mattio      Lower part of the
                et al.                 main axis giving
                                       rise to stolon-like
                                       horizontal branches;
                                       stolon branches
                                       smooth, cylindrical
                                       to flattened and
                                       branched, often
                                       bearing secondary
                                       haptera from which a
                                       new plantlet may
                                       arise; upper parts
                                       of the secondary
                                       axis densely clothed
                                       with leaves,
                                       vesicles and
                                       receptacles.

IVA. sectio     Sargassum              Leaves and vesicles
                                       well differentiated,
                                       leaves not retroflex
                                       at basis;
                                       receptacles usually
                                       compound,
                                       cylindrical, smooth,
                                       arranged in cymes or
                                       racemes. NB. this
                                       description needs
                                       revision.

IV.5. sectio    Zygocarpicae (J.       Receptacles
                Agardh) Setchell       associated to leaves
                                       and/or vesicles. NB.
                                       this description
                                       needs revision.

IV6. sectio     Johnstonii E. Y.       Leaves very narrow,
                Dawson ex J. N.        subcylindrical to
                Norris-need            compressed, midrib
                assessment with        absent,
                DNA markers            cryptostomata
                                       usually present;
                                       vesicles elliptical
                                       with long apiculate
                                       extensions.

IV 7. sectio    Lapazeanum E. Y.       Holdfast
                Dawson ex J. N.        rhizomatous, leaves
                Norris-need            flattened, expanded,
                assessment with        and asymmetrical,
                DNA markers            midrib absent or
                                       occasionally, if
                                       present,
                                       inconspicuous.

IV.8. .sectio   Sinicola E. Y          Holdfast woody,
                Dawson ex J. N.        conical, or knotty,
                Norris-need            with short
                assessment with        protuberances;
                DNA markers            leaves longer than
                                       wide, symmetrical,
                                       midrib present,
                                       dentate to serrate
                                       margins,
                                       cryptostomata
                                       present, often
                                       abundant; vesicles
                                       subspherical to
                                       spherical.

IV. subgenus    Phyllotrichia          Primary branches
                (Areschoug) J.         emerging from the
                Agardh                 stern or main axis
                                       as 'foliar
                                       expansions', which
                                       are pinnatifd and
                                       usually flattened
                                       below, but may
                                       become cylindrical
                                       above where they
                                       bear vesicles and
                                       receptacles;
                                       vesicles essentially
                                       without terminal
                                       outgrowth.

Taxonomic       Type species           Other species (a)
rank

Genus           S. bacciferum
                (Turner) C. Agardh
                (Basionym : Fucus
                baccifer Turner
                1802: 56, no data
                about type,
                Falmouth) (= S.
                natans (Linnaeus)
                Gaillon)

I. subgenus     S. heterophyllum C.    S. bllax Sondeti S.
                Agardh h (1820: 21,    lacerirolium
                syntype LD herb.       (Turner) C. Agardh,
                Agadh?, Cape of Good   S. paradoxum (R.
                Hope, Japan,           Brown ex Turner)
                Australia) (= S.       Gaillon, S.
                incisitblium           robusturn J. Agardh,
                (Turner) C. Agardh)    S. tristichum
                                       Sonder, S. vestitunr
                                       (R. Brown ex Turner)
                                       C. Agardh

II. subgenus    S. horneri (Turner)
                C. Agardh (Basionym:
                Fucus horneri
                Turner" 1808: 34,
                type BM-K, Korea
                Strait)

II.1. settio    S. siliyuastrum        S. autumnale
                (Mert. ex Turner) C.   Yoshida, S.
                Agardh (Basionym :     gigantei/olirrm
                Fucus siguastrus,      Yam., S.
                lectotype BM, port     nigrifolirun Yendo,
                Nagasaki, Japon)       S. okamurae Yoshida
                                       et Konno, S.
                                       ringgoldianum
                                       Harvey, S.
                                       sinclairii Hook. et
                                       Harvey, S.
                                       serratifolium (C.
                                       Agardh) C. Agardh,
                                       S. trichophyllum
                                       (Kiitzing) Kuntze,
                                       S. vamadae Yoshida
                                       et Konno, S.
                                       yezoense (Yamada)
                                       Yoshida et Konno

II.2. sectio    S. fusiforme           To date this section
                (Harvey) Setchell      contains only one
                (Basionym :            species.
                Cystophyllum
                fusiforme Harvey
                1860: 328, no data
                on type location,
                Shimoda, Japan)

II.3. sectio    S. horneri (Turner)    S rlicinum Harvey
                C. Agardh (Basionym
                : Fucus horneri
                Turner 1808: 34,
                type BM-K, Korea
                Strait)

II.4. sectio    S. confusum C.         S. boreale Yoshida
                Agardh (1824: 301,     et Horiguchi, S.
                lectotype LD3230       ulvellum (Turner) C.
                herb. Agardh, Japan)   Agardh, S.
                                       hemiphyllum (Turner)
                                       C. Agardh, S.
                                       muticum (Yendo)
                                       Fensh., S.
                                       thunbergii (Mertens
                                       ex Roth) Kuntze

III. subgenus   S. bacciferum
                (Turner) C. Agardh
                (Basionym : Fucus
                baccifer Turner
                1802: 56, no data
                about type,
                Falmouth) (= S.
                natans (Linnaeus)
                Gaillon)

IV. 1. sectio   S. binderi Sonder ex   S. aguifolium
                J. Agardh (J.          (Turner) C. Agardh,
                Agardh, 1848: 328,     S. patens C. Agardh,
                syntypes TCD           S. swartzii C.
                1110-1113a,            Agardh
                Indonesia and China

Taxonomic       Type species Sea)      Other species
rank            (= S. aquifblium
                (Turner) C. Agardh)

IV.2. settio    S. ilicifblium         S. quinhonense
                (Turner) C. Agardh     Nguyen, S. mcclurei
                (Basionyme Fucus       Setchell
                ilicifbhus Turner
                1807: 113, holotype
                BM 562953, Sunda
                Strait).

IV.3. settio    S. polvevstutn C.      S. baccularia
                Agardh (1824: 304,     (Mertens) C. Agardh,
                syntypes TCD 1108,     S. herporhizttm
                1109, Sunda Strait)    Setchell et N. L.
                                       Gardner, S.
                                       plagiophyflum
                                       Montague, S.
                                       brandegeei Setchell
                                       et N. L. Gardner, S.
                                       liehmanni J. Agardh

IVA. sectio     S. baccilerum          S. cymosum C.
                (Turner) C. Agardh     Agardh, S. howeanum
                (Basionym : Fucus      Lucas, S. hystrix J.
                baccifer; Turner       Agardh, S.
                1802 : 56, no data     obtusifolium J.
                about type,            Agardh, S. aci icuni
                Falmouth) (= S.        Bory, S. polyphyllum
                natans (Linnaeus)      J. Agardh, S.
                Gaillon)               polyporum Monta ue,
                                       S. siliquosum J.
                                       Agardh, S.
                                       spinuligerum Sonder,
                                       S. vulgare C. Agardh

IV.5. sectio    S. carpoplryllum J.    S. aemulum Sonder,
                Agardh (c) (1848:      S. angustifolium C.
                304, holotype LD2306   Agardh, S. cinereum
                herb. Agadh,           J. Agardh, S.
                Sri-Lanka)             denticarpum Ajisaka,
                                       S. glaucescens J.
                                       Agardh, S. incanum
                                       Grunow, S.
                                       tenerrimum J.
                                       Agardh, S.
                                       turbinarioides
                                       Grunow, S.
                                       vachellianum
                                       Greville, S.
                                       vietnamense Zinova
                                       et Dinh

IV6. sectio     S. Johnstonii          To date this section
                Setchell et N. L.      contains only one
                Gardner (1924: 737,    species.
                type UC?, Georges
                Is., Gulf of
                California)

IV 7. sectio    S. lapazeanum          S. acinacifolium
                Setchell et N. L.      Setchell et N. L.
                Gardner (1924: 734,    Gardner, S.
                type UC?, La Paz       macdougalii E. Y.
                California)            Dawson, S. sonorense
                                       E. Y. Dawson

IV.8. .sectio   S. sinicola Setchell   S. sinicola subspec.
                et N. L. Gardner       Camouii (E. Y.
                (1924: 736, type UC    Dawson) J. N. Norris
                ?, La Paz,             et Yensen, S.
                California)            horridum Setchell et
                                       N. L. Gardner

IV. subgenus    S. sonderi (J.         S. decipiens (R.
                Agardh) J. Agardh      Brown ex Turner) J.
                (Basionym :            Agardh, S.
                (vstophora sonderi     heteroniorphum J.
                J. Agardh 1848: 247,   Agardh, S. pemnii C.
                type LD 2043 herb.     Agardh, S. varians
                Agadh, Western         Sonder; S.
                Australia)             verruculosuni C.
                                       Agardh

(a) underlined epithets correspond to taxa which confirmed
by DNA markers analysis

(b) S. sect. Arthrophycus J. Agardh (1848) was subdivided
into three tribes: Schizophvlla, Holophylla and
Heterophylla. Only species of tribes Heterophylla were
maintained by J. Agardh (1889) to form S. subgen.
Arthrnphvcus. The two first tribes were transferred to
subgenus rank as respectively S. subgen Schvzophvcus and
Bactrophycus. In this context, it is the founding species of
tribus Heterophylla (S. heteroplrvllum) which we propose as
type of S. subgen. Arthmphycus taxonomic position was

(c) S. carpoplrvlltrm is proposed as the type species of S.
sect. Zvgocarpicae because it represents the nornen
typifrcatum of its first subdivision (tribe Caryophyllae J.
Agardh) as listed by J. Agardh (1889)


Acknowledgments We would like to express our gratitude to all curators involved in the search for and loans of specimens, especially B. de Reviers, curator of PC (Museum national d'histoire naturelle de Paris). E. Raffy is thanked for improving the English of the manuscript. We are indebted to the anonymous reviewers for their useful comments. This work is part of L. Mattio research which was supported by a Province Sud (New Caledonia) Doctoral Research Scholarship, UR 227 CoReUs (Biocomplexite des ecosystemes coralliens de l'Indo-Pacifique), UMR 7158 (IRD-Noumea, New Caledonia) and UMR6540 (Centre d'Oceanologie de Marseille, France). The DNA analyses were conducted at the 'Plateforme du Vivant' (IRD, Noumea, New Caledonia). M. Verlaque is thanked for co-supervising the PhD project. Part of this research was funded by the Agence Nationale pour la Recherche (ANR BIONEOCAL).

Literature Cited

Abbott, I. A. 1992. Sargassum subgenus Sargassum. Section 1, Part 1: Introduction. Pp 1-3. In: 1. A. Abbott (ed). Taxonomy of economic seaweeds with reference to some Pacific and Western Atlantic species, vol. 3. California Sea Grant College Program, La Jolla, California.

--. 2004. A special introduction and an explenation. Pp ix. ln: Abbott, 1. A. & K. J. McDermid (eds). Taxonomy of economic seaweeds with reference to the Pacific and other locations, vol. 9. University of Hawaii Sea Grant College Program, Honolulu, Hawaii.

--, C. K. Tseng & B. Lu. 1988. Clarification of some subgeneric nomenclature in Sargassum subgenus Sargassum. Pp 55-7. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species, vol. 2. California Sea Grant College Program, La Jolla, California.

Adams, N. M. 1994. Seaweeds of New Zealand. Canterbury University Press, Christchurch.

Agardh, C. A. 1820. Species algarum rite cognitae, cum synonymis, differentiis specificis et descriptionibus succinctis, vol. 1. Berling, Lund, 168 pp.

--. 1824. Systema algarum. Berling, Lund, 312 pp.

Agardh, J. G. 1848. Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur Algas fucoideas complectens, vol. 1. Gleerup, C. W. K., Lund, 363 pp.

--. 1889. Species Sargassorum Australiae descriptae et dispositae. Ofversigt af Kongl. Svenska Vetenskaps-Adademiens Handlingar 23(3): 1-133.

Ajisaka, T., T. Noro, & T. Yoshida. 1995. Zygocarpic Sargassum species (subgenus Sargassum) from Japan. Pp 11-44. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 5. California Sea Grant College Program, La Jolla, California.

Areschoug, J. E. 1854. Phyceae novae et minus cognitae in maribus extraeuropaeis collectae. Nova Acta Regiae Societatis Scientiarum Upsaliensis, 3(1): 329-372.

Belsher, T. & Pommellec, S. 1988. Expansion de l'algue d'origine japonaise Sargassum muticum (Yendo) Fensholt, sur les cotes francaises, de 1983 a 1987. Cahiers de Biologie Marine 29:221-231.

Chase, M. W., R. S. Cowan, P. M. Hollingsworth, C. van den Berg, S. Madrinan, G. Petersen, et al. 2007. A proposal for a standardised protocol to barcode all land plants Taxon 56: 295-299.

Cheang, C. C., K. H. Chu & P. O. Ang. 2008. Morphological and genetic variation in the populations of Sargassum hemiphyllum (Phaeophycae) in the northwestern Pacific. Journal of Phycology 44: 855-865.

Cho, G. Y., S. H. Lee & S. M. Boo. 2007. A new Brown algal order, Ishigeales (Phaeophyceae), established on the basis of plastid protein-coding rbcL, psaA, and psbA region comparisons. Journal of Phycology 40: 921-936.

Coyer, J. A., G. J. Smith & R. A. Andersen. 2001. Evolution of Macrocystis spp. (Phaeophyceae) as determined by ITS-1 and ITS-2 sequences. Journal of Phycology 37: 574-585.

--, G. Hoarau, M.-P. Oudot-Le Secq, W. T. Stam & J. L. Olsen. 2006. A mtDNA- based phylogeny of the brown algal genus Fucus (Heterokontophyta; Phaeophyta). Molecular Phyogenetics and Evolution 39: 209-222.

Dawson, E. Y. 1944. The Marine Algae of the Gulf of California. Allan Hancock Pacific Expeditions 3 (10): 189-453.

De Clerck, O., F. Leliaert, H. Verbruggen, C. E. Lane, J. C. De Paula, D. A. Payo & E. Coppejans.

2006. A revised classification of the Dictyoteae (Dictyotales, Phaeophyceae) based on rbcL and 26S ribosomal DNA sequence analyses. Journal of Phycology 42: 1271-1288.

De Wreede, R. E. 1976. The phenology of three species of Sargassum (Sargassaceae, Phaeophyta) in Hawaii. Phycologia 15: 175-83.

Diaz-Villa, T., Afonso-Carrillo, J. & M. Sanson. 2007. Distinctive morphological features of Sargassum desfontainesii (Fucales, Phaeophyceae). Cryptogamie Algologie 28: 325-335.

Draisma, S. G. A. & F. Rousseau. 2010. DNA sequence data demonstrate the polyphyly of the genus Cystoseira and other Sargassaceae genera (Phaeophyceae). Journal of Phycology: in press.

--, W. F Prud'homme van Reine, W. T. Stam & J. L. Olsen. 2001. A reassessment of phylogenetic relationships within the Phaeophyceae based on Rubisco large subunit and ribosomal DNA sequences. Journal of Phycology 37: 586-603.

Engel, C. R., C. Daguln, & E. A. Serrao. 2005. Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Molecular Ecology 14: 2033-2046.

Faye, E. J., H. Wei Wang, S. Kawaguchi, S. Shimada & M. Masuda. 2004. Reinstatement of Grateloupia subpectinata (Rhodophyta, Halymeniaceae) based on morphology and rbcL sequences. Phycological Research 52: 59-67.

Gillespie, R. D. & A. T. Critchley. 1997. Morphometric studies of Sargassum spp. from Reunion Rocks, KwaZulu-Natal, South Africa. I. Receptacle studies. South African Journal of Botany 63: 356-362.

--&--. 2001. Assessment of spatial and temporal variability of three Surgassum species (Fucales, Phaeophyta) from KwaZulu-Natal, South Africa. Phycological Research 49(3): 241-249.

Goldberg, N. A. & J. M. Huisman. 2004. Sargassum kendrickii (Fucales, Phaeophyceae), a new species of subgenus Phyllotrichia from southern Australia. Botanica Marina 47: 424-430.

Greville, R. K. 1848. Algae orientales: Descriptions of new species belonging to the genus Sargassum. Annals and Magazine of Natural History 2(2): 203-206, 274-277, 431-434.

--. 1849. Algae orientales: Descriptions of new species belonging to the genus Sargassum. Annals and Magazine of Natural History 2(3): 106-109, 216-219, 254-257, 503-506.

Grunow, A. 1915. Additamenta ad cognitionem Sargassorum. Verhandlungen der Kaiserlich-Koniglichen Zoologisch-Botanischen Gesellschaft in Wien 65: 329-448.

--. 1916a. Additamenta ad eognitionem Sargassorum. Verhandlungen der Kaiserlich-Koniglichen Zoologisch-Botanischen Gesellschaft in Wien 66: 1-48.

--. 1916b. Additamenta ad cognitionem Sargassorum Verhandlungen der Kaiserlich-Koniglichen Zoologisch-Botanischen Gesellschaft in Wien 66:136-185.

Guiry, M. D. & G. M. Guiry. 2010. AlgaeBase version 4.2. World-wide electronic publication, National University of Ireland, Galway, http://www.algaebase.org; searched on 5 February 2010.

Harvey, W. H. 1859. Characters of new algae, chiefly from Japan and adjacent regions, collected by Charles Wright in the North Pacific exploring expedition under Captain John Rodgers. Proceedings of the American Academy of Arts & Science 4: 327-334.

Hayden, H. S., J. Blomster, C. A. Maggs, P.C. Silva, M.J. Stnhupe & J.R. Waaland. 2003. Linnaeus was fight all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology 38: 277-294.

Hoarau, G., J. A. Coyer, J. H. Veldsink, W. T. Stam & J. L. Olsen. 2007. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Molecular Ecology 16: 3606-3616.

Kilar, J. A. & M. D. Hanisak. 1989. Phenotypic variability in Sargassum polyceratium (Fucales, Phaeophyta). Phycologia 28: 491-500.

--,--& T. Yoshida. 1992. On the expression of phenotypic variability: why is Sargassum so taxonomically difficult? Pp 95-117. In: Abbott, 1. A. (ed). Taxonomy of economic seaweed with reference to some Pacific and Western Atlantic species, vol. 3. California Sea Grant College Program, La Jolla, California.

Kogame, K., T. Horiguchi & M. Masuda. 1999. Phylogeny of the order Scytosiphonales (Phaeophyceae) based on DNA sequences of rbcL, partial rbcS, and partial LSU nr DNA. Phycologia 38: 496-502.

Kooistra, W. H. C. F., W. T. Stam, J. L.Olsen & C. van den Hoek. 1992. Biogeography of Cladophoropsis membranacea (Chlorophyta) based on comparisons of nuclear rDNA ITS sequences. Journal of Phycology 28: 660-668.

Kutzing, F. T. 1843. Phycologia generalis oder Anatomic, Physiologic und Systemkunde der Tange. Brockhaus, F. A., Leipzig.

--. 1845. Phycologia germanica, d. i. Deutschlands Algen in bundigen Beschreibungen. Nebst einer Anleitung zum Untersuchen und Bestimmen dieser Gewachse fur Anfanger. W. Kohne, Nordhausen.

--. 1849. Species algarum. Brockhaus, F. A., Leipzig.

Lindauer, V. W., V. J. Chapman & M. Aiken. 1961. The marine algae of New Zealand. Part II: Phaeophycae. Nova Hedwigia 3: 129-350.

Linnaeus, C. 1753. Species Plantarum. Laurentius Salvius, Stockholm.

Lucas, A. H. S. 1935. The marine algae of Lord Howe Island. Proceedings of the Linnean Society of New South Wales 60: 194-232.

Magruder, W. H. 1988. Surgassum (Phaeophyta, Fucales, Sargassaceae) in the Hawaiian Islands. Pp 65-87. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species, vol. 2. California Sea Grant College Program, La Jolla, California.

Mattio, L. & C. E. Payri. 2009. Taxonomic revision of Sargassum (Fucales, Phaeophyceae) from New Caledonia based on morphological and molecular analyses. Journal of Phycology 45: 1374-1388.

--, --& V. Stiger-Pouvreau. 2008. Taxonomic revision of Sargassum (Fucales, Phaeophyceae) from French Polynesia based on morphological and molecular analyses. Journal of Phycology 44: 1541-1555.

--, --& M. Verlaque. 2009. Taxonomic revision and geographic distribution of subgenus Sargassum (Fucales, phaeophyceae) in the western and central Pacific islands based on morphological and molecular analyses. Journal of Phycology 45: 1213-1227.

--, --, --& B. de Reviers. 2010 Taxonomic revision of Sargassum sect. Acanthocarpicae (Fucales, Phaeophyceae). Taxon: in press

McNeill, J., F. R. Barrie, H. M. Burdet, V. Demoulin, D. L. Hawksworth, K. Marhold, D. H. Nicolson, J. Prado, P. C. Silva, J. E. Skog, J. H. Wiersema & N. J. Turland (eds.). 2006 International Code of Botanical Nomenclature (Vienna Code) adopted by the seventeenth International Botanical Congress, July 2005, Vienna, Austria.

Montagne, C. 1842 Troisieme centurie de plantes cellulaires exotiques nouvelles. Drcades V, VI, VII et VIII. Annales des Sciences Naturelles, Botanique 2(18): 241-282.

--. 1845. Plantes cellulaires. Pp 1-349. In: Hombron, J B. & H. Jacquinot (eds) Voyage au Pole Sud et dans l'Ocranie sur les corvettes l'Astrolabe et la Zelre pendant les annees 1837-1838-1839-1840, sous le commandement de M. J. Dumont-d'Urville. Botanique, vol. 1. Gide et Cie, Paris, France.

Nizamuddin, M. 1962 Classification and the distribution of the Fucales. Botanica Marina 4: 191-203.

--, Hiscoek, S., Barratt, L. & Ormond, R. F.G. 1993. The occurrence and morphology of Sargassopsis gen. nov. (Phaeophyta, Fucales) in southern Oman. Botanica Marina 36: 109-121.

Norris, J. N. 2010 Marine Algae of the Northern Gulf of California: Chlorophyta and Phaeophyceae. Smithsonian Contributions to Botany 94: 1-276.

Noro, T., Ajisaka, T. & T. Yoshida. 1995 Sargassum henslowianum vat condensatum Yamada in Japan: a synonym of Sargassum yendoi Okamura et Yamada Pp 3-9. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 5. California Sea Grant College Program, La Jolla, California.

Okamura, K. 1932. The distribution of marine algae in Pacific waters. Records of Oceanic works in Japan 4: 30-150.

Olsen, J. L. 1990. Nucleic acids in algal systematics Journal of Phycology 26: 209-214.

Oudot-Le Seeq, M. P., B. Kloareg & S. Loiseaux-de Goer. 2002 The mitochondrial genome of the brown alga Laminaria digitata: a comparative analysis. European Journal of Phycology 37: 163-172

--, S. Loiseaux-de Goer, W. T. Stam & J. L. Olsen. 2006. Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis. Current Genetics 49: 47-58

Phillips, N. 1995 Biogeography of Sargassum (Phaeophyta) in the Pacific basin Pp 107-144 In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 5. California Sea Grant College Program, La Jolla, California.

--. 1998. Molecular phylogenetic analysis of the pan-Pacific genus Sargassum. PhD dissertation, University of Hawaii Honolulu. Hawaii.

--& S. Fredericq. 2000 Biogeographic investigations of the pan-tropical genus Sargassum (Fucales, Phaeophyceae) with respect to Gulf of Mexico species Gulf of Mexico Science 2000(2): 77-87.

--, C. Smith & C. W. Morden. 2005 Testing systematic concepts of Sargassum (Fucales, Phaeophyceae) using portion of the rbcLS operon. Phycological Research 53: 1-10.

--, R. Burrowes, F. Rousseau, B. de Reviers & G. W. Saunders. 2008a. Resolving evolutionary relationships among the brown algae using chloroplast and nuclear genes. Journal of Phycology 44: 394-405.

--, S. Calhoun, A. Moustafa, D. Bhattacharya & E. L. Braun. 2008b. Genomic insights into evolutionary relationships among heterokont lineages emphasizing the Phaeophyceae. Journal of Phycology 44: 15-18.

Prud'homme van Reine, W. F. 2002. Sargassum C. Agardh. Pp 240-246. In: Prud'homme van Reine, W. F. & G. C. Trono (eds). Plant ressources of South-East Asia No. 15(1) Cryptogams: Algae. Prosea Foundation, Bogor, Indonesia

Robba, L., S. J. Russell, G. L. Barker & J. Brodie. 2006. Assessing the use of the mithochondrial coxl marker for use in DNA barcoding of red algae (Rhodophyta) American Journal of Botany 93: 1101-1108

Rousseau, F. & B. de Reviers. 1999 Phylogenetic relationships within the Fucales (Phaeophyceae) based on combined partial SSU+LSU rDNA sequence European Journal of Phycology 34: 53-64.

--, M. C. Leclerc & B. de Reviers. I997. Molecular phylogeny of European Fucales (Phaeophyceae) based on partial large-subunit rDNA sequence comparisons Phycologia 36: 438-446

--, R. Burrowes, A. F. Peters, R. Kuhlenkamp & B. de Reviers. 2001. A comprehensive phylogeny of the Phaeophyceae based on nrDNA sequences resolves the earliest divergences Comptes Rendus de l'Academie des Sciences de Paris 324: 305-319.

Saunders, G. W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications Philosophical Transactions of the Royal Society, B: Biological Sciences 360: 1879-1888.

Setchell, W. A. 1931. Hong-Kong seaweeds II. Sargassaceae. Hong-Kong naturalist supplement 2: 237-253.

--. 1933. Hong-Kong seaweeds III. Sargassaceae. Hong-Kong naturalist supplement 2: 33-49.

Setchell, W. A. 1935a. The Templeton Crocker Expedition to western Polynesian and Melanesian islands, 1933. Some marine plants of south-eastern Melanesia. Proceedings of the Californian Academy of Science 21: 259-75.

--. 1935b. Hong Kong Seaweeds, IV. Sargassaceae. Hong-Kong naturalist supplement 4: 1-24.

--. 1936. Hong Kong Seaweeds, V. Sargassaceae. Hong-Kong naturalist supplement 5: 1-20.

--. 1937. The Templeton Coker expedition of California Academy of Sciences, 1932. Report on the Sargassums. Proceedings of the Californian Academy of Science 22: 127-58.

Setchell, W. A. & N. L. Gardner. 1924. Expedition of the California Academy of Sciences to the Gulf of California in 1921. The marine algae. Proceedings of the Californian Academy of Science 12: 731-740.

Silva, P. C., P. W. Basson & R. L. Moe. 1996. Catalogue of the benthic marine algae of the Indian Ocean. University of California Publication in Botany, Los Angeles, California.

Smit, A. J. 2004. Medecinal and pharmaceutical uses of seaweed natural products: A review. Journal of Applied Phycology 16: 245-262.

Steneck, R. S., M. H. Graham, B. J. Bourque, D. Corbett, J. M. Erlandson, J. A. Estes & M. J. Tegner. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation 29: 436-459.

Stiger, V., T. Horiguchi, T. Yoshida, A. W. Coleman & M. Masuda. 2000. Phylogenetic relationships of Sargassum (Sargassaceae, Phaeophyceae) with reference to a taxonomic revision of the section Phyllocystae based on ITS-2 nrDNA sequences. Phycological Research 48: 251-60.

--,--,--,--&--. 2003. Phylogenetic relationships inferred from ITS-2 nrDNA comparisons within the genus Sargassum (Fucales, Phaeophyceae) from the Pacific basin, with an emphasis on the taxonomic subdivision of the genus. Phycological Research 51: 1-10.

Stuessy, T. E, & C. Konig. 2008. Patrocladistic classification. Taxon 57: 594-601.

Tatarenkov, A., R. B. Jonsson, L. Kantsky & K. Johannesson. 2007. Genetic structure in populations of Fucus vesiculosus (Phaeophyceae) over spatial scales from 10 m to 800 km. Journal of Phycology 43: 675-685.

Thibaut, T., S. Pinedo, X. Torras & E. Ballesteros. 2005. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Marine Pollution Bulletin 50: 1472-1489.

Trevisan, V. B. A. 1843. Memoria sopra una nuova classificazione delle alghe. Pp 328-335. In: Atti della quarta riunione degli scienziati italiani, Padova, Italia.

Trono, G. C., Jr. 1992. The genus Sargassum in the Philippines. Pp 43-94. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Western Atlantic species, vol. 3. California Sea Grant College Program, La Jolla, California.

Tseng, C. K. 1985. Sargassum sect. Phyllocystae sect. nov., a new section of subgenus Bactrophycus. Pp 15-15. In: Abbott, I. A. & J. N. Norris (cds). Taxonomy of economic seaweed with reference to some Pacific and Caribbean species, vot. 1. California Sea Grant College Program, La Jolla, California.

--& B. Lu. 1988. Studies on the Chinese species of zygocarpic Sargassum. Pp 23-54. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species, vol. 2. California Sea Grant College Program, La Jolla, Califonia.

--&--. 1992a. Studies on the malacocarpic Sargassum of China 1. Fructilifaerae J. Agardh. Pp 5-10. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Western Atlantic species, vol. 3. California Sea Grant College Program, La Jolla, California.

--&--. 1992b. Studies on the malacocarpic Sargassum of China II. Racemosae J. Agardh. Pp 11-34. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Western Atlantic species, vol. 3. California Sea Grant College Program, La Jolla, California.

--&--. 1995a. Studies on the glomerulate Sargassum of China 1. The series Binderiana. Pp 67-74. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 5. California Sea Grant College Program, La Jolla, California.

--&--. 1995b. Studies on the glomerulate Sargassum of China II. The species group Swartziia. Pp 75-92. In: Abbott, 1. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 5. California Sea Grant College Program, La Jolla, California.

--&--. 1995c. Studies on the glomerulate Sargassum of China III. The species group Binderia. Pp 93-106. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 5. California Sea Grant College Program, La Jolla, California.

--&--. 1997a. Studies on the bisserulic Sargassum of China I. Taxonomy of the subsection Bisserulae. Pp 3-7. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 6. California Sea Grant College Program, La Jolla, California.

--&--. 1997b. Studies on the glomerulate Sargassum of China IV. Series of Platycarpae. Pp 9-25. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 6. California Sea Grant College Program, La Jolla, California.

--&--. 1999. Studies on the bisserulic Sargassum of China: II. The series Coriifoliae J. Agardh. Pp 3-22. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 7. California Sea Grant College Program, La Jolla, California.

--&--. 2002a. Studies on the bisserulic Sargassum of China: III. On Sargassum parvifolium (Turner) C. Agardh, with a note on the classification of Bisserulae. Pp 3-8. In: Abbott, I. A. & K. J. McDermid (cds). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 8. California Sea Grant College Program, La Jolla, California.

--&--. 2002b. Studies on the bisserulic Sargassum of China: IV. The series Plagiophyllae Tseng et Lu. Pp 11-33. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 8. California Sea Grant College Program, La Jolla, California.

--&--. 2002c. Studies on the bisserulic Sargassum of China: V. The series Ilicifoliae (J.

Agardh) Tseng et Lu. Pp 35-76. In: Abbott, I. A. & K. J. McDermid (eds). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 8. California Sea Grant College Program, La Jolla, California.

--&--. 2002d. Some new species and records of Sargassum (Sargassaceae, Phaeophyta) from the China Sea. Pp 135-148. In: Abbott, I. A. & K. J. McDemaid (eds). Taxonomy of economic seaweeds with reference to some Pacific species, vol. 8. California Sea Grant College Program, La Jolla, California.

--, T. Yoshida & Y. M. Chiang. 1985. East asiatic species of Sargassum subgenus Bactrophycus J. Agardh (Sargassaceae, Fucales), with keys to the sections and species. Pp 1-14. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to some Pacific and Caribbean species, vol. 1. California Sea Grant College Program, La Jolla, California.

Turner, D. 1808. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones et historia. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, vol. 1. J. & A. Arch Cornhill, London, England.

--. 1809. Fuci sive plantarum fucorum generi a botunicis ascriptarum icones descriptiones et historia. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, vol. 2. J. & A. Arch Cornhill, London, England.

--. 1811. Fuci sive plantarum fucorum generi a botanicis ascriptarum icones descriptiones et historia. Fuci, or coloured figures and descriptions of the plants referred by botanists to the genus Fucus, vol. 3. J. & A. Arch Cornhill, London, England.

Wallace, A. L., A. S. Klein & A. C. Mathieson. 2004. Determining the affinities of salt marsh Fucoids using Microsatellite markers: Evidence of Hybridization and Introgression between two species of Fueus (Phaeophyta) in a marine estuary. Journal of Phycology 40: 1013-1027.

Womersley, H. B. S. 1954. Australian species of Sargassum, subgenus Phyllotrichia. Australian Journal of Botany 2: 337-354.

--. 1987. The marine benthic flora of southern Australia South. Australian Government Printing Division 2: 418-446.

--& A. Bailey. 1970. Marine algae of the Solomon Islands. Philosophical Transactions of the Royal Society B: Biological Sciences 259: 257-352.

Yamada, Y. 1956. On the distribution of Sargassum on the coast of Japan and its neighbouring regions. Pp 218-220. In Braarnd, T. & N. A. Sorensen (eds). Second International Seaweeds Symposium. Pergamon press, London.

Yendo, K. 1907. The Fucaceae of Japan. Journal of the College of Science, Imperial University of Tokyo 21: 1-74.

Yoshida, T. 1983. Japanese species of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). Journal of the Faculty of Science, Hokkaido University, Series V (Botany) 13: 99-246.

--. 1987. Notes on the Grunow collection (W) of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). Journal of the Faculty of Science 14: 73-87.

--. 1989a. Systematics of Sargassum (Fucales, Phaeophyceae). Pp 229-238. In: Kumar, H. D. (ed). Phycotalk. Rasgoti & company, Subhash Bazar, India.

--. 1989b. Taxonomy of Sargassum. The Korean Journal of Phycology 4: 107-110.

--, T. Ajisaka, T. Noro & T. Horigushi. 2004. Species of the genus Sargassum subgenus Schizophycus. Pp 93-106. In: Abbott, I. A. (ed). Taxonomy of economic seaweeds with reference to the Pacific and other locations, vol. 9. Hawaii Sea Grant College Program, Honolulu, Hawaii.

--, V. Stiger, T. Ajisaka & T. Noro. 2002. A molecular study of section-level classification of Sargassum subgenus Bactrophycus (Sargassaceae, Phaeophyta). Pp 89-94. In: Abbott, I. A. & K. J. McDermid (eds). Taxonomy of economic seaweed with reference to some Pacific species, vol. 8. California Sea Grant College Program, La Jolla, California.

--,--& T. Horiguchi. 2000. Sargassum boreale sp. nov. (Fucales, Phaeophyceae) from Hokkaido, Japan. Phycological Research 48: 125-131.

Zhao, F., X. Wang, J. Liu & D. Duan. 2007. Population genetic structure of Sargassum thunbergii (Fucales, Phaeophyta) detected by RAPD and ISSR markers. Journal of Applied Phycology 19: 409-416.

(1) Note that the term 'spiny' is commonly employed in Sargassum taxonomy, however, it may refer to various types of spine-like protuberances which depending on their aspect may be of taxonomic significance.

Lydiane Mattio [1,2] * Claude E. Payri [1]

[1] Institut de Recherche pour le Developpement, Unit6 227 CoReUs, BPA5, 98848 Noumea, New Caledonia

[2] Author for Correspondence; e-mail: lydianematlio@gmail.com

Published online: 22 September 2010
Table 1 Number of Sargassum taxa listed in the literature
and number of actual taxa after taxonomic revision for South
Pacific Islands according to (a) Mattio et al. (2008), (b)
Mattio et al. (2009), and (c) Mattio and Payri (2009)

Locality            Nb of taxa   Nb of taxa   References
                      before       after
                     revision     revision

Cook Is.                3            3           (a)
Easter Is.              1            2           (a)
Fiji Is.                10           4           (b)
French Polynesia        18           3           (a)
Nauru                   2            2           (b)
New Caledonia           45           11          (c)
Pitcairn                1            2           (a)
Samoa                   9            3           (b)
The Solomon Is.         7            3           (b)
Tonga                   4            3           (b)
Vanuatu                 0            2           (b)
Wallis                  1            1           (b)
Total Nb. of taxa       67           13          --

Table 2 Identification key for Sargassum subdivisions. NB: Norris
(2010)'s sections could not be considered for the construction of the
key because the available diagnoses could fit several of the below
sections (cf. main text for more details)

1. Main axis cylindrical, flattened to          subgen. Phyllotrichia
   foliar, leav es pinnatifid, little or
   not differentiated
1. Main axis distinctly differentiated                [right arrow] 2
   in secondary axis, leaves (mainly
   simple) and vesicles                               [right arrow] 3
2. Axis bicuspid or angular, leaves
   retroflex
2. Axis cylindrical, compressed, or                   [right arrow] 4
   flattened (not folio), leaves rarely
   retroflex subgen Sargassum                    subgen. Bactrophycus
3. Receptacles simple, axillary, or              subgen. Arthrophycus
   terminal                                           sect Polycystae
3. Receptacles compound                                             5
4. Stolon-like axis present                                         6
4. Stolon-like axis absent
5. Axis cylindrical and spindly                                     7
5. Axis slightly compressed to
   flattened and thick                             sect. Zygocarpicae
6. Receptacles mixed with leaves and/or
   vesicles (zygocarpic)                              sect. Sargassum
6. Receptacles forming cymes,
   cylindrical and warty (malacocarpic)              sect. Binderiana
7. Axis flattened, leaves elongated and
   distichously arranged
7. Axis slightly compressed, leaves                  sect. Ilicifolia
   wide, spatulate, and spirally                   sect. Spongocarpus
   arranged
8. Main axis long, primly axis absent                 [right arrow] 9
8. Main axis shorter, primary axis well
   developed                                          sect. Halochloa
9. Receptacles compressed to                        [right arrow] 100
   triqueterous
9. Receptacles cylindrical                              sect. Teretia
10. Leaves flattened, with or without
    midrib, vesicles differentiated
10. Leaves cylindrical or compressed,                   sect. Hizikia
     vesicles not differentiated similar to
    leaves

Table 3 Abbreviations used in Fig. 4

Acantho       S. sect. Acanthocarpicae
Acin          S. ser. Acinariae
Arthro        S. subgen. Arthrophycus
Bactro        S. subgen. Bactrophycus
Bis           S. subsect. Biserrulae
Carpo         S. ser. Carpophyllae
Cymo          S. subsect. Cymosae
Dimo          S. trib. Dimorphae
Fruti         S. subsect. Fruticuliferae
Glan          S. ser. Glandulariae
Glom          S. subsect. Glomerulatae
Halo          S. sect. Halochloa
Holo          S. subsect. Holozygocarpicae
Herpo         S. sect. Herporhizum
llici         S. ser. Ilicifolia
Malaco        S. sect. Malacocarpicae
Phyl          S. sect. Phylllocystae
Phyllo        S. subgen. Phyllotrichia
Phyllomorph   S. trib. Phyllomorphae
Plagio        S. ser. Plagiophyllae
Platy         S. ser. Platycarpae
Pseudozygo    S. subsect. Pseudozygocarpicae
Racemo        S. subsect. Racemosae
Rep           S. sect. Repentia
Sarg          S. subgen. Sargassum
Schizo        S. subgen. Schizophycus
Siliq         S. ser. Siliquosae
Spon          S. sect. Spongocarpus
Tere          S. sect. Teretia
Zygo          S. sect. Zygocarpicae

Table 4 Bibliographic references used in Fig. 4

[1] J. Agardh (1889)
[2] Ajisaka et al. (1995)
[3] Goldberg and Huisman (2004)
[4] Grunow (1915)
[5] Harvey (1859)
[6] Lucas (1935)
[7] Now et al. (1995)
[8] Okamura (1932)
[9] Phillips et al. (2005)
[10] Phillips and Fredericq (2000)
[11] Setchell (1931)
[12] Setchell (1933)
[13] Setchell (1935b)
[14] Setchell and Gardner (1924)
[15] Stiger et al. (2000)
[16] Stiger et al. (2003)
[17] Tseng et al. (1985)
[18] Tseng and Lu (1997b)
[19] Tseng and Lu (2002b)
[20] Womersley (1954)
[21] Yamada (1956)
[22] Yendo (1907)
[23] Yoshida (1983)
[24] Yoshida et al. (2000)
[25] Mattio et al. (2010)
[26] Mattio et al. (2009)
[27] Norris (2010)
[28] This study
COPYRIGHT 2011 New York Botanical Garden
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

 
Article Details
Printer friendly Cite/link Email Feedback
Author:Mattio, Lydiane; Payri, Claude E.
Publication:The Botanical Review
Article Type:Report
Geographic Code:8NEWC
Date:Mar 1, 2011
Words:14411
Previous Article:Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants.
Next Article:Tropical and temperate: evolutionary history of paramo flora.
Topics:

Terms of use | Privacy policy | Copyright © 2018 Farlex, Inc. | Feedback | For webmasters