Printer Friendly

'Fifth force of nature' could help probe Earth's deep interior.

Washington, February 24 ( ANI ): Researchers from Amherst College and The University of Texas at Austin have proposed a new technique to probe Earth's deep interior that relies on a "fifth force of nature".

Making a breakthrough in the field of particle physics, they have established new limits on what scientists call "long-range spin-spin interactions" between atomic particles. These interactions have been proposed by theoretical physicists but have not yet been seen.

Their observation would constitute the discovery of a "fifth force of nature" (in addition to the four known fundamental forces: gravity, weak, strong and electromagnetic) and would suggest the existence of new particles, beyond those presently described by the Standard Model of particle physics.

The new limits were established by considering the interaction between the spins of laboratory fermions (electrons, neutrons and protons) and the spins of the electrons within Earth.

To make this study possible, the Professor of Physics Larry Hunter and colleagues at Amherst College and The University of Texas at Austin created the first comprehensive map of electron polarization within Earth induced by the planet's geomagnetic field.

The team combined a model of Earth's interior with a precise map of the planet's geomagnetic field to produce a map of the magnitude and direction of electron spins throughout Earth. Their model was based in part on insights gained from Lin's studies of spin transitions at the high temperatures and pressures of Earth's interior.

Every fundamental particle (every electron, neutron and proton, to be specific), explained Hunter, has the intrinsic atomic property of "spin."

Spin can be thought of as a vector-an arrow that points in a particular direction. Like all matter, Earth and its mantle-a thick geological layer sandwiched between the thin outer crust and the central core-are made of atoms. The atoms are themselves made up of electrons, neutrons and protons that have spin.

Earth's magnetic field causes some of the electrons in the mantle's minerals to become slightly spin-polarized, meaning the directions in which their spins point are no longer completely random, but have some net orientation.

Earlier experiments, including one in Hunter's laboratory, explored whether their laboratory spins prefer to point in a particular direction.

"We know, for example, that a magnetic dipole has a lower energy when it is oriented parallel to the geomagnetic field and it lines up with this particular direction-that is how a compass works," he explained.

"Our experiments removed this magnetic interaction and looked to see if there might be some other interaction that would orient our experimental spins. One interpretation of this 'other' interaction is that it could be a long-range interaction between the spins in our apparatus, and the electron spins within the Earth, that have been aligned by the geomagnetic field. This is the long-range spin-spin interaction we are looking for," he stated.

So far, no experiment has been able to detect any such interaction. But in Hunter's paper, the researchers describe how they were able to infer that such so-called spin-spin forces, if they exist, must be incredibly weak-as much as a million times weaker than the gravitational attraction between the particles.

At this level, the experiments can constrain "torsion gravity"-a proposed theoretical extension of Einstein's Theory of General Relativity. Given the high sensitivity of the technique Hunter and his team used, it may provide a useful path for future experiments that will refine the search for such a fifth force.

If a long-range spin-spin force is found, it not only would revolutionize particle physics but might eventually provide geophysicists with a new tool that would allow them to directly study the spin-polarized electrons within Earth.

"If the long-range spin-spin interactions are discovered in future experiments, geoscientists can eventually use such information to reliably understand the geochemistry and geophysics of the planet's interior," said Lin.

A paper about their work appeared in this week's issue of the prestigious journal Science. ( ANI )


Copyright 2013 All rights reserved.

Provided by an company
COPYRIGHT 2013 Al Bawaba (Middle East) Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Publication:Asian News International
Date:Feb 24, 2013
Previous Article:Pistorius' 'thanking fans for support' tweet revealed to be fake.
Next Article:Regular good night's sleep key to keeping heart healthy.

Terms of use | Privacy policy | Copyright © 2020 Farlex, Inc. | Feedback | For webmasters