Printer Friendly

Try special drills for special savings.

For many years, engineers sought improved twist-drill performance. In the quest, they developed solid-carbide drills, carbide tips, superabrasive inserts, powder-metal steel, new HSS alloys, and, most recently, titanium nitride (TiN) coatings. However, these new materials do not work alone. To yield longer tool life and better performance, they must be coupled with proper geometry and good tool design. Here are some cases where more expensive special tools proved to be cheaper in the long run because they cut overall production cost or did a better job. Often, we didn't even need the exotic new tool materials.

For example, Figure 1 shows an application where a standard drill wandered off course. To drill a 0.1122"-dia through-hole into an injector nozzle, our customer first tried a jobber-length drill working through a bushing. He found he couldn't get the bushing close enough to the workpiece surface to handle the oblique entry and exit. Because of the angled entry, holes were often off-center, and heavy lateral forces acted on the drill, causing excessive land wear and premature drill failure.

The solution was simple. Our trouble-shooting engineers wanted to keep a good length of the plain portion of the drill shank engaged in the bushing before the tool point made contact with the work. Therefore, they reduced the flute length by 50 percent, leaving the overall drill length the same as before. This design greatly increased drill rigidity, and, coupled with a special 140-degree drill point, solved the problem. Yes, the special drill cost twice as much as a standard, but tool performance quadrupled, and overall productivity increased eight times.

Another customer had a simple job, but wanted longer tool life. He was drilling sheet packs, each consisting of 10 sheet-metal plates 31.5" X 59" X 0.118". The 0.394" (10 mm) jobber drills originally used could not cope. Frequent breakages occurred on the corners of the cutting edges.

To solve this problem, our engineers modified standard jobbers by grinding a double-angle point, using 118 degrees and 90 degrees. This design, similar to that used for cast iron, doubled tool life. The point was also specially web thinned to reduce thrust load and pressure on the sheets that formerly had tended to bend. A further benefit, the double-angle design aided breakthrough, avoiding grabbing and leaving a clean, burr-free finish to the underside of the hole.

Graphite sandwiches

The difficulty in machining GRP is well known to many tool engineers. In the application shown in Figure 2, a simple 1/4"-dia hole was needed, but conditions were severe. The graphite material was embedded in a sandwich. The top layer consisted of stainless steel, the bottom, aluminum. The first choice would normally be a heavy-duty drill, but this won't deliver the exact concentricity and burrless performance demanded by the user.

Beginning with a tungsten carbide base, we designed a special step drill with no margins at the pilot diameter. The step served for predrilling and as a guide pilot. The guide allowed the larger diameter to finish the hole through the sandwich with minimum torsional vibration.

To reduce burr formation, we reduced the standard 32-degree helix angle to 22 degrees. Tool life proved to be 200 holes between regrinds. The tools served in pneumatic drilling guns, suggesting that carbide is not as fragile as some might think. It will handle severe jobs as long as it can be kept from vibrating and facing intermittent cutting.

In another case, the task was to drill 0.2953"-dia through-holes 0.6693" long in 100 Cr 6 having a hardness of 99.5 RB, Figure 3. The drill ran horizontally at 835 rpm with a feed of 0.0039 ipr. Coolant was soluble oil. Unfortunately, even a drill bushing could not keep the hole concentric. And there were burrs at the exit hole.

The user tried solving the problem by dividing the operation into two steps. First he predrilled a pilot hole, and then finished with a core drill. But this was too expensive. Our solution used a HSS subland drill with special diameters of 0.2953" and 0.2362", and a step length of 0.2362". The smaller diameter handled predrilling and centering, and also served as a pilot guide.

To aid centering, we gave the tool a split point to form C with coinciding center lines. Thus, the pilot stabilized the countersink diameter (0.2953"), which worked as a core drill in this case. Good chatter-free cutting was achieved with improved hole finish.

Flexible challenge

Here's a problem we could blame on the workpiece, but of course we had to solve it just the same. After a bending operation, the piece shown in Figure 4 required realignment of prepunched holes. The manufacturer tried to use a core drill to correct the average 0.0197" error. It would have worked except for flexing of the relatively flimsy workpiece.

To meet the challenge, we modified our standard No 533 core drill to a point angle of 195 degrees to improve centering ability and greatly reduce burr formation. The required accuracy ruled out use of a conventional pilot diameter. Instead, we built a drilling jig designed to compensate for thrust load and eliminate flexing of the joint plate. After some effort to finalize drill-bushing guidance, the setup increased production rates.

A deep-hole assignment is shown in Figure 5. The 0.1024"-dia hole had to be drilled 3.622" deep with maximum axial-alignment error of only 0.03937". Depth-to-diameter ratio was 35, and the material was C 45 round bar.

We first thought of our standard deep-hole drills, which tackle depths up to 15 times drill diameter, usually without pecking. But would the design work with a ratio of 35? To find out, we built a high-speed cobalt drill with a specially optimized profile similar to the GT 100 type. Its length was 5.512", with flute length of 3.937", point angle of 130 degrees, and standard web thinning.

Trial runs were better than expected. Average alignment accuracy was 0.0177", with 0.0374" maximum. We told the customer he could use a setup with 17 withdrawals, 2820 rpm, peripheral cutting of 75.5 sfm, and 0.000 59 ipr feed. On the job, the tools gave 42 holes per regrind, some 20 percent more than originally specified.

Vanadium body

We dealt with a really intractable material for the workpiece shown in Figure 6. It was a rotor body made of V4A vanadium steel, requiring a 0.3937"-dia center hole. The user's plan required first drilling with a 3/16" carbide-tipped tool, then countersinking with a solid-carbide tool having the required 60-degree form. He used a cutting speed of 213 sfm for both operations, feeding manually and flooding with a soluble-oil coolant. If lucky, he got six pieces per grind. Often, one of the tools broke before he even got six!

The solution was to use a cheaper tool. We decided that cobalt super-high-speed steel would work better than carbide. We designed a special centerdrill made of cobalt high-speed steel and told the user to run it at a much slower surface speed than used for carbide. This loss was amply made up by the increased feed rate made possible. More efficient cutting angles eliminated the breakages that plagued the former setup, and drill life between regrinds increased to 18 or more parts. Thus, a lower-cost tool allowed a single setup, longer too life, and less downtime. Carbide isn't always the answer.

No drill would work in the hard laminated silicon sheets shown in Figure 7. The user wanted to drill a 0.150"-dia blind hole 1" deep in the hard sheets--in the direction of the laminations! All combinations of drills, feeds, speeds, and coolants failed. After a slight penetration, all cutting surfaces became completely blunt.

We found that the sheets formed hard grainy swarf when drilled together in the plane of the laminations. The hard swarf immediately dulled cutting edges. Furthermore, drills would not withstand the great heat generated in the operation.

Our solution took the form of a drill made of cobalt alloyed high-speed steel. It works better in sophisticated material and can take much more heat. A high-pressure air-hose pipe was installed to blow chip fragments off the hole before they could affect the drill. We took 20 cuts at 30 sfm and 0.0024 ipr. After 20 holes, only slight wear marks appeared on the cutting edges, and the lands showed no visible wear.

Benefits of hard coating

As suggested earlier, many given tools, whether specials or standards, can be improved by coatings that make tool-edge surfaces very hard without affecting the condition of the base material. For instance, a TiN coating (what we call an S coating) can dramatically increase tool life, sometimes by more than 2000 percent.

We have tested coated twist drills on a wide range of workpieces and find they almost always offer longer life than identical uncoated tools. This is particularly true when the tool must cut highly abrasive materials, workpieces prone to cold welding, hard or abrasive nonferrous alloys, and difficult materials including synthetics.

The coating treatment also improves finish in the hole--so much so that secondary reaming can often be eliminated.

Through holes are generally much more demanding on a drill than blind holes. Surprisingly, tests show an even greater increase in performance in through holes than in blind holes. These results are attributable to the wellbonded, wear-resistant coating.

The coating also reduces cutting forces. We tested thrust and torque in a number of applications. For example, in a through-hole operation on 35 Rc plate steel 1.1811" thick, using 0.2953"-dia drills, thrust loading of an S-drill was 17 percent less than that required for an untreated tool. Also, the range of thrustload variation was reduced by 75 percent with the coated drill. In the same test, torque load was lessened and was more uniform with the coated drills. These benefits stem from reduced resistance to chip flow with treated drills. Also, the coating has a smooth, oily surface that aids cutting action.

TiN coatings at work

Coating benefits range from significant to spectacular. For example, in 1045 medium carbon steel with a hardness of 16 to 23 Rc, Figure 8, performance increased 500 percent. The rocker bearing required a 0.315"-dia through-hole, 1.338" deep, bordering on a tangential 1.575"-dia hole. Cutting speed with a competitor's standard cobalt HSS drill was 66 sfm at 0.005 ipr feed. The setup used a horizontal spindle, hydraulic feed, and soluble-oil coolant. Tool life was 105 holes, with occasional drill breakage brought about by unstable performance and drill flexing.

Switching to a GT 100 S-treated drill of the same type increased performance 500 percent, producing 530 holes before regrind. Even after regrinding, the drills machined 320 holes, allowing safe programming for 300 holes per tool change.

In cutting a 0.394"-dia hole 0.591" deep in armor plate hardened to 38 to 43 Rc, production increased from 12 holes per tool to 50 holes, an increase of 415 percent. Cutting speed was 33 sfm at 0.0051 ipr in a vertical spindle with automatic feed drive. Standard cutting oil served as coolant.

The yoke plate in Figure 9 is made of free-cutting 12L13 resulphurized carbon steel. Two 0.512"-dia through holes are drilled to a depth of 0.224". The original taper-shank tool machined 2100 parts before regrinding, compared to 20,500 parts for an S-coated drill of the same type. Even after repointing, the TiN-coated tool processed 11,300 parts. The improvement amounts to 980 percent for first use, and 550 percent after regrinding. Spot drilling was not required. Instead, the vertical spindle fed the drill through a bushing. Very rich soluble oil served as coolant for the 85-rpm, 0.008-ipr operation.

Finally, consider this last case. The workpiece was 316 stainless steel, requiring a 0.236"-dia through-hole to a 1-3/16" drilling depth. Three tools were tested at 26 sfm, 0.0024 ipr, in a vertical spindle with mechanical drive. The operation used soluble-oil coolant and required two drill withdrawals. A premium cobalt HSS tool lasted for only 30 cuts; an HSS drill with TiN coating survived 110 holes, but a cobalt HSS tool with TiN coating drilled 675 holes. That's a performance increase of 2250 percent!

For small holes or large, nonferrous materials, soft workpieces, cold-extruded materials, superhard tool steels--and almost anything else--TiN coatings generally provide significant tool-life improvement. Even if tool life is only doubled, the coating pays for itself in tool cost alone, not to mention overall productivity gains and reductions in maintenance costs.

Application hints

Nothing is as easy as it first appears, and there are some things to watch for in applying TiN coatings. For example, the coating increases surface hardness of the tool from 80 Rc to greater than 2000 Vickers. It's harder than tungsten carbide. Because hard materials are sensitive to vibration and chatter, you must make setups as rigid as possible, with no axial or radial play in the drilling-machine spindle or backlash in the feed mechanisms.

The drills are resharpened in exactly the same way as standard or cobalt HSS tooling. Although coated-drill performance is lowered somewhat by regrinding, it remains superior to that of untreated drills.

Maximum performance of coated drills is achieved by increasing the cutting speed while maintaining the same feed rate. This results in better tool life and superior hole surface finish. However, you do have to watch details carefully. Drill geometry can drastically affect the life of coated drills, as illustrated in Figure 10.

For more information about special drills, circle E21.
COPYRIGHT 1985 Nelson Publishing
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 1985 Gale, Cengage Learning. All rights reserved.

Article Details
Printer friendly Cite/link Email Feedback
Author:Stanton, Robert
Publication:Tooling & Production
Date:Mar 1, 1985
Words:2282
Previous Article:Cut a hole in a part; cut a part from the hole... that's what one job shop operator is doing using a novel hole cutter that gives him more slugs than...
Next Article:Inside tips on gundrill geometry.
Topics:


Related Articles
The truth about TiN.
Holemaking goes high-tech.
Valve maker cuts production time 40%.
Innovations in holemaking.
Engineering Demands at the Colville River.
Quick-change artistry.
FIRE CADETS SHOW THEY KNOW THE DRILL.
Getting off the 'regrind grind' merry-go-round.

Terms of use | Copyright © 2016 Farlex, Inc. | Feedback | For webmasters