Printer Friendly
The Free Library
22,719,120 articles and books

The Reception of the Galilean Science of Motion in Seventeenth-Century Europe.



Carla Rita Palmerino and J. M. M. H. Thijssen, eds., The Reception of the Galilean Science of Motion in Seventeenth-Century Europe.

Boston Studies in the Philosophy of Science, vol. 239. Dordrecht, and Boston: Kluwer Academic Publishers, 2004. 275 pp. index. illus. bibl. $109. ISBN ISBN
abbr.
International Standard Book Number


ISBN International Standard Book Number

ISBN n abbr (= International Standard Book Number) → ISBN m 
: 1-4020-2454-1.

Nowadays, Galileo's theory of motion is so well received that we unthinkingly ascribe a positive connotation to this book's title. Unqualified, however, reception is an ambiguous term: was it warm? delayed? smooth? hostile? Lacking our easy post-Newtonian enthusiasm, knowledgeable seventeenth-century readers of Galileo's Dialogue (1632) and Two New Sciences (1638) saw in his theory of motion multiple conceptual, mathematical, and philosophical problems.

At one end of the reception spectrum, Rene Descartes was a cursory reader of Galileo who doubted the empirical validity of the odd-numbers-law of free fall. Sometimes Galileo himself had downplayed empirical tests before mathematical argumentation. Even judged as pure mathematics, however, Galileo's science of motion was egregious, suspiciously treating a falling body's total speed as the sum of a number of degrees of speed. At the other end, Pierre Gassendi--who did drop weights from the mast of a moving ship and took the odd-numbers law as valid--was one of many who wondered at Galileo's silence about the cause of free fall. In short, Galileo did not always make it easy for his readers, whose furrowed brows this book explains in rich detail.

I highly recommend Carla Rita Palmerino's lucid introduction to the collection, since I cannot adequately summarize here, let alone evaluate, eleven sophisticated, high-quality analytical studies that mostly address a specialist audience. The synthetic exception is Floris Cohen's essay. He presents the Scientific Revolution as Galileo's and Kepler's bridging of the bimillennial "chasm" (95) between two approaches to nature and their progeny: the Athenian (natural philosophical) and the Alexandrian (mathematical). While Cohen's story helps him understand Descartes's reticence toward Galileo, it sells short the millennial promiscuity Promiscuity
See also Profligacy.

Anatol

constantly flits from one girl to another. [Aust. Drama: Schnitzler Anatol in Benét, 33]

Aphrodite

promiscuous goddess of sensual love. [Gk. Myth.
 of natural philosophy and mathematics in medieval Arabic and Latin optics, astronomy, and astrology, to say nothing of the science of motion.

Alan Gabbey scrutinizes the expression mechanical philosophy, arguing that these Cartesian words do not refer to a philosophical program before the 1660s. Sophie Roux Roux , Pierre Paul Émile 1853-1933.

French bacteriologist. His work with the diphtheria bacillus led to the development of antitoxins to neutralize pathogenic toxins.
, who disagrees, illuminates fundamental tensions in Descartes's mechanics, especially its hermetic hermetic /her·met·ic/ (her-met´ik) impervious to air.

her·met·ic or her·met·i·cal
adj.
Completely sealed, especially against the escape or entry of air.
 theoretical seal between speed and heaviness. William Shea William Alfred "Bill" Shea (June 21, 1907 – October 2, 1991) was a lawyer who is best known for his part in the return of National League professional baseball to New York City after the departure of the Brooklyn Dodgers and New York Giants after the 1957 season, and for the  shows how Descartes's rejection of the void ca. 1630 surprisingly led him to see both free fall as "mathematically intractable" and Galileo's solution as extreme in identifying the physical and the mathematical.

Two contributions seek to make the invisible visible. Jochen Buttner, Peter Damerow, and Jurgen Renn argue from Galileo's unpublished works that the rocky reception of Galileo's work proceeded from his contemporaries' protection of a "shared knowledge" (100) that also surfaces in Galileo's manuscripts. For his part, Enrico Giusti lets Galileo's disciples fill in the undocumented steps of Galileo's evolution and argues that Galileo had two theories of free fall.

Palmerino's study of Pierre Gassendi's correspondence challenges his proto-Newtonian image: his principle of inertia still had circular elements, and his notion of force did not yield a uniform continuous acceleration even as he sought the cause behind Galileo's odd-numbers law of free fall. Cees Leijenhorst demonstrates that Thomas Hobbes's efforts and struggles paralleled those of Gassendi: frustratingly, the impacts of bodies could not produce a uniform continuous acceleration, which Hobbes too sought to explain by both "attractive" and "impelling im·pel  
tr.v. im·pelled, im·pel·ling, im·pels
1. To urge to action through moral pressure; drive: I was impelled by events to take a stand.

2. To drive forward; propel.
 forces."

Wallace Hooper's useful survey of sixteenth- and seventeenth-century tidal theories from Copernicus to Wallis finds in modern science a partial (but anachronistic a·nach·ro·nism  
n.
1. The representation of someone as existing or something as happening in other than chronological, proper, or historical order.

2.
) vindication of Galileo's maligned ma·lign  
tr.v. ma·ligned, ma·lign·ing, ma·ligns
To make evil, harmful, and often untrue statements about; speak evil of.

adj.
1. Evil in disposition, nature, or intent.

2.
 tidal theory, notably his attention to the shape of sea basins in explaining tidal periods.

Christiane Vilain sees Christiaan Huygens Noun 1. Christiaan Huygens - Dutch physicist who first formulated the wave theory of light (1629-1695)
Christian Huygens, Huygens
, who generalized Galileo's relativity of motion with his own imaginary boat experiment, as offering a non-inductive, more sophisticated geometrically-oriented mechanics. Despite debts to both Galileo and Descartes, Huygens, unlike them, blurred the distinctions between "natural phenomena, geometrical curves, and machines." Michel Blay brings Pierre Varignon Pierre Varignon (1654, Caen – December 23, 1722, Paris) was a French mathematician.

Pierre Varignon was educated at the Jesuit College in Caen. After further studies at the University of Caen he received his M.A. in 1682.
 out of Newton's shadow ca. 1700 and makes a strong case for the mathematical and physical interest of his work, notably in his treatments of velocity (as a quotient, at an instant) and of central forces in relation to rectilinear rec·ti·lin·e·ar  
adj.
Moving in, consisting of, bounded by, or characterized by a straight line or lines: following a rectilinear path; rectilinear patterns in wallpaper.
 and curved trajectories.

As this rich, well-edited collection of first-rate work on the bumpy reception of Galileo's work shows, the study of early modern mechanics is thriving in Europe.

MICHAEL H. SHANK shank (shangk)
1. leg (1).

2. crus ( 2).


shank
n.
The part of the human leg between the knee and ankle.
 

University of Wisconsin-Madison “University of Wisconsin” redirects here. For other uses, see University of Wisconsin (disambiguation).
A public, land-grant institution, UW-Madison offers a wide spectrum of liberal arts studies, professional programs, and student activities.
 
COPYRIGHT 2006 The Renaissance Society of America
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2006, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Author:Shank, Michael H.
Publication:Renaissance Quarterly
Article Type:Book review
Date:Mar 22, 2006
Words:727
Previous Article:Galileo's Astrology.
Next Article:Le concept de semence dans les theories de la matiere a la Renaissance: De Marsile Ficin a Pierre Gassendi.
Topics:



Related Articles
Science and the Secrets of Nature: Books of Secrets in Medieval and Early Modern Culture.
Theory and Theology in George Herbert's Poetry: "Divinitie, and Poesie, Met".
The Seventeenth Century.
The Unmaking of the Medieval Christian Cosmos, 1500-1760: From Solid Heavens to Boundless AEther and Comets, Popular Culture, and the Birth of Modern...
The Unfinished Mechanics of Giuseppe Moletti: An Edition and English Translation of His Dialogue on Mechanics, 1576 and Cesare Cremonini: aspetti del...
An Entrance for the Eyes: Space and Meaning in Seventeenth-Century Dutch Art & Art and Home: Dutch Interiors in the Age of Rembrandt.
Giambattista Riccioli e il merito scientifico dei gesuiti nell'eta barocca.
Le concept de semence dans les theories de la matiere a la Renaissance: De Marsile Ficin a Pierre Gassendi.
Between Worlds: Dybbuks, Exorcists, and Early Modern Judaism.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters