Printer Friendly

Scientists get closer to creating artificial life: study

Scientists have discovered a more efficient way of building a synthetic genome that could one day enable them to create artificial life, according to a study.

The method is already being used to help develop next generation biofuels and biochemicals in the labs of controversial celebrity US scientist Craig Venter.

Venter venter /ven·ter/ (ven´ter) pl. ven´tres   [L.]
1. a fleshy contractile part of a muscle.

2. abdomen.

3. a hollowed part or cavity.

 has hailed artificial life forms as a potential remedy to illness and global warming, but the prospect is highly controversial and arouses heated debate over its potential ramifications ramifications nplAuswirkungen pl  and the ethics of engineering artificial life.

Artificially engineered life is one of the Holy Grails of science, but also stirs deep fears as foreseen in Aldous Huxley's 1932 novel "Brave New World Brave New World

Aldous Huxley’s grim picture of the future, where scientific and social developments have turned life into a tragic travesty. [Br. Lit.: Magill I, 79]

See : Dystopia

Brave New World
" in which natural human reproduction is eschewed in favor of babies grown in laboratories.

The J. Craig Venter Institute The J. Craig Venter Institute is a non-profit genomics research institute founded by J. Craig Venter, Ph.D. in October 2006. (Venter first announced the existence of the Institute on 29 September 2004.  succeeded in synthetically reproducing the DNA DNA: see nucleic acid.
 or deoxyribonucleic acid

One of two types of nucleic acid (the other is RNA); a complex organic compound found in all living cells and many viruses. It is the chemical substance of genes.
 of a simple bacteria last year.

The researchers had initially used the bacteria e. coli to build the genome, but found it was a tedious, multi-stage process and that e. coli had difficulty reproducing large DNA segments.

They eventually tried using a type of yeast called Saccharomyces Saccharomyces: see yeast.  cerevisiae. This enabled them to finish creating the synthetic genome using a method called homologous recombination, a process that cells naturally use to repair damage to their chromosomes.

They then began to explore the capacity for DNA assembly in yeast, which turned out to be a "genetic factory," the Institute said in a statement Wednesday.

The researchers inserted relatively short segments of DNA fragments into yeast cells through homologous recombination method.

They found they were able to build the entire genome in one step, according to the study set to be published in the Proceedings of the National Academy of Sciences The Proceedings of the National Academy of Sciences of the United States of America, usually referred to as PNAS, is the official journal of the United States National Academy of Sciences. .

"We continue to be amazed by the capacity of yeast to simultaneously take up so many DNA pieces and assemble them into genome-size molecules," said lead author Daniel Gibson.

"This capacity begs to be further explored and extended and will help accelerate progress in applications of synthetic genomics."

Senior author Clyde Hutchison added, "I am astounded a·stound  
tr.v. a·stound·ed, a·stound·ing, a·stounds
To astonish and bewilder. See Synonyms at surprise.

[From Middle English astoned, past participle of astonen,
 by our team's progress in assembling large DNA molecules. It remains to be seen how far we can push this yeast assembly platform but the team is hard at work exploring these methods as we work to boot up the synthetic chromosome."

Venter and his team continue to work towards creating a living bacterial cell using the synthetic genome sequence of the Mycoplasma genitalium bacteria.

The bacteria, which causes certain sexually transmitted diseases Sexually transmitted diseases

Infections that are acquired and transmitted by sexual contact. Although virtually any infection may be transmitted during intimate contact, the term sexually transmitted disease is restricted to conditions that are largely
, has one of the least complex DNA structures of any life form, composed of just 580 genes.

In contrast, the human genome has some 30,000.

Using the genetic sequence of this bacteria, the Maryland-based team has created a chromosome known as Mycoplasma laboratorium.

They are working on developing a way to transplant this chromosome into a living cell and stimulate it to take control and effectively become a new life form.
Copyright 2008 AFP American Edition
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright (c) Mochila, Inc.

 Reader Opinion




Article Details
Printer friendly Cite/link Email Feedback
Publication:AFP American Edition
Date:Dec 5, 2008
Previous Article:Guitarist files plagiarism lawsuit against Coldplay
Next Article:Bush thanks Iraqi leaders for security deal

Related Articles
Inventing life: to explore life-as-we-know-it, scientists simulate life-as-it-could-be.
Life swap: switching genomes converts bacteria.
Frankencats, cornstarch, chromosomes, and confusion.
Skirting the membrane dilemma: early cells may not have needed sophisticated proteins.
Happy 50th birthday: this year, ScienceWorld turns 50. Check out the issues we've pulled from our vault to see how science has changed over the last...
MIT scientists move closer to 'artificial noses'
It's life, Jim, but not as we know it
Scientists get closer to creating artificial life: study

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters