Printer Friendly

References.

Bardhan P & Udry C, 1999. Chapter 4. Development Economics. Oxford: Oxford University Press.

Basist A et al., 2001. Using the Special Sensor Microwave Imager to monitor surface wetness. Journal of Hydrometeorology 2: 297-308.

Boer G, Flato G & Ramsden D, 2000. A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate for the 21st century. Climate Dynamics 16: 427-450.

CIESIN (Center for International Earth Science Information Network), 2004. Columbia University and Centro Internacional de Agricultura Tropical (CIAT), Gridded Population of the World, Version 3. Palisades, NY: CIESIN/Columbia University

Cline WR, 1996. The impact of global warming on agriculture: Comment. American Economic Review 86: 1309-1312.

Darwin R, 1999. The impacts of global warming on agriculture: A Ricardian analysis: Comment. American Economic Review 89: 1049-1052.

Deressa T, Hassan R & Poonyth, D, 2005. Measuring the economic impact of climate change on South Africa's sugarcane growing regions. Agrekon 44(4): 524-542.

Dinar A, Hassan R, Kurukulasuriya P, Benhin J & Mendelsohn R, 2006. The policy nexus between agriculture and climate change in Africa. A synthesis of the investigation under the GEF / WB Project, Regional Climate, Water and Agriculture: Impacts on and Adaptation of Agro-ecological Systems in Africa. CEEPA Discussion Paper No 39, Centre for Environmental Economics and Policy in Africa, University of Pretoria.

Emori, S, Nozawa T, Abe-Ouchi A, Namaguti A & Kimoto M, 1999. Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. Journal of the Meteorological Society of Japan 77: 1299-1307.

FAO (Food and Agriculture Organization), 2003. The digital soil map of the world: Version 3.6 (January), Rome, Italy.

FAOSTAT, 2005. Estimates of agricultural land use, Internet Database. Rome, Italy. http://faostat.fao.org/

Gbetibouo G & Hassan R, 2005. Economic impact of climate change on major South African field crops: A Ricardian approach. Global and Planetary Change 47: 143-152.

Houghton JT et al., (eds), 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Kaiser HM, Riha SJ, Wilks DS & Sampath RK, 1993a. Adaptation to global climate change at the farm level. In Kaiser H & Drennen T (eds), Agricultural Dimensions of Global Climate Change. Delray Beach, Florida: St. Lucie Press.

Kaiser HM, Riha SJ, Wilks DS, Rossiter DG & Sampath RK, 1993b. A farm-level analysis of economic and agronomic impacts of gradual warming. American Journal of Agricultural Economics 75: 387-398.

Kelly DL, Kolstad CD & Mitchell GT, 2005. Adjustment costs from environmental change. Journal of Environmental Economics and Management 50: 468-495.

Kumar K & Parikh J, 2001. Indian agriculture and climate sensitivity. Global Environmental Change 11: 147-154.

Kurukulasuriya P & Ajwad MI, 2006 (forthcoming). Application of the Ricardian technique to estimate the impact of climate change on smallholder farming in Sri Lanka. Climatic Change. (Online first version, March)

Kurukulasuriya P & Rosenthal S, 2003. Climate change and agriculture: A review of impacts and adaptations. Paper No. 91 in Climate Change Series, Agriculture and Rural Development Department and Environment Department, World Bank, Washington, DC.

Lotsch A, 2006. Sensitivity of cropping patterns in Africa to transient climate change. CEEPA Discussion Paper No. 14, Centre for Environmental Economics and Policy in Africa, University of Pretoria.

McCarthy J, Canziani OF, Leary, NA, Dokken DJ & White C (eds), 2001. Climate Change

2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Mendelsohn R, 2006 (forthcoming). Climate change impacts on agriculture. In Evenson R & Pingali P (eds), Volume III: Handbook of Agricultural Economics: Agricultural Development Chapter 19.

Mendelsohn R & Dinar A, 2003. Climate, water, and agriculture. Land Economics 79(3): 328-341.

Mendelsohn R & Nordhaus W, 1996. The impact of global warming on agriculture: Reply. American Economic Review 86: 1312-1315.

Mendelsohn R & Nordhaus W, 1999. The impact of global warming on agriculture: Reply to Darwin. American Economic Review 89: 1053-1055.

Mendelsohn R, Nordhaus W & Shaw D, 1994. The impact of global warming on agriculture: A Ricardian analysis. American Economic Review 84: 753-771.

Mendelsohn R, Nordhaus W & Shaw D, 1999. The impact of climate variation on US agriculture. In Mendelsohn R & Neumann J (eds), The Impact of Climate Change on the Economy of the United States. Cambridge: Cambridge University Press.

Mendelsohn R, Sanghi A & Dinar A, 2001. The effect of development on the climate sensitivity of agriculture. Environment and Development Economics 6: 85-101.

Molua EL, 2002. Climate variability, vulnerability and effectiveness of farm-level adaptation options: The challenges and implications for food security in southwestern Cameroon. Environment and Development Economics 7: 529-545.

Pearce D et al., 1996. The social costs of climate change: Greenhouse damage and benefits of control. In Bruce J, Lee H & Haites E (eds), Climate Change 1995: Economic and Social Dimensions of Climate Change. Cambridge: Cambridge University Press, pp.179-224.

Reilly J et al., 1996. Agriculture in a changing climate: Impacts and adaptations. In Watson R, Zinyowera M, Moss R & Dokken D (eds), 1996. Climate Change 1995: Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analyses, Cambridge: Cambridge University Press for the Intergovernmental Panel on Climate Change (IPCC).

Rosenzweig C & Parry ML, 1994. Potential impact of climate change on world food supply. Nature 367: 133-138.

Sanghi A, 1998. Global warming and climate sensitivity: Brazilian & Indian agriculture. PhD dissertation, Department of Economics, University of Chicago.

Siebert, S et al., 2005. The digital global map of irrigated areas, V3 (April 2005). Institute of Physical Geography, University of Frankfurt & Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome, Italy.

Sohngen BR, Mendelsohn R & Sedjo R, 2002. A global market of climate change impacts on timber markets. Journal of Agricultural and Resource Economics 26: 326-343.

Strzepek K & McCluskey A, 2006. District level hydroclimatic time series and scenario analysis to assess the impacts of climate change on regional water resources and agriculture in Africa. CEEPA Discussion Paper No 13, Centre for Environmental Economics and Policy in Africa, University of Pretoria.

USGS (United States Geological Survey), 2004. Global 30 Arc Second Elevation Data,

USGS National Mapping Division, EROS Data Centre. http://edcdaac.usgs.gov/gtopo30/gtopo30.asp

Washington W et al., 2000. Parallel Climate Model (PCM): Control and transient scenarios. Climate Dynamics 16: 755-774.

Weng F & Grody N, 1998. Physical retrieval of land surface temperature using the Special Sensor Microwave Imager. Journal of Geophysical Research 103: 8839-8848.

World Bank, 2003. Africa rainfall and temperature evaluation system (ARTES). World Bank, Washington DC.

Pradeep Kurukulasuriya and Robert Mendelsohn (2)

(1) An earlier version of this Working Paper was published as CEEPA Discussion Paper number 8.

(2) School of Forestry and Environmental Studies, Yale University, 230 Prospect St, New Haven, CT 06511, USA. E-mails: pradeep.kurukulasuriya@yale.edu; robert.mendelsohn@yale.edu. The authors wish to thank Rashid Hassan, David Maddison and Ariel Dinar for their comments. The special effort of Jeffrey Lecksel in fixing some of the maps in this paper are much appreciated.

This paper was funded by the GEF and the World Bank. It is part of a larger study on the effect of climate change on agriculture in Africa, managed by the World Bank and coordinated by the Centre for Environmental Economics and Policy in Africa (CEEPA), University of Pretoria, South Africa.

Soil definitions: Rhodic ferralsols with fine texture in hilly to steep areas (frFHS), eutric gleysols with coarse texture in undulating areas (geCU), lithosols hilly to steep slope (ilqHS), chromic luvisols with medium to fine texture in undulating areas (lcMFU), chromic luvisols in moderate to steep areas (lcMS), gleyic luvisols (lg), orthic luvisols in moderate to hilly areas (loMH), dystric nitrosols (nd), cambic arenosols (qc), luvic arenosols (ql), chromic vertisols with fine texture in undulating areas (vcFU), calcic yermosols with coarse to moderate texture and in undulating to hilly areas (ykCMUH), lithosols in hilly and steep areas (ilqHS), luvic arenosols (ql), dystric nitosols (nd), gleyic luvisols (lg).

Soil definitions: Rhodic ferralsols with fine texture in hilly to steep areas (frFHS), eutric gleysols with coarse texture in undulating areas (geCU), lithosols hilly to steep slope (ilqHS), chromic luvisols with medium to fine texture in undulating areas (lcMFU), chromic luvisols in moderate to steep areas (lcMS), gleyic luvisols (lg), orthic luvisols in moderate to hilly areas (loMH), dystric nitrosols (nd), cambic arenosols (qc), luvic arenosols (ql), chromic vertisols with fine texture in undulating areas (vcFU), calcic yermosols with coarse to moderate texture and in undulating to hilly areas (ykCMUH), lithosols in hilly and steep areas (ilqHS), luvic arenosols (ql), dystric nitosols (nd), gleyic luvisols (lg).
Table 1: Useable surveys by country

Country Dryland Irrigated Total

Burkina Faso 990 41 1031
Cameroon 646 105 751
Egypt 0 802 802
Ethiopia 874 66 940
Ghana 849 29 878
Kenya 675 79 754
Niger 849 48 897
Senegal 1037 31 1068
South Africa 199 87 286
Zambia 956 14 970
Zimbabwe 597 90 687
Total 7672 1392 9064

Table 2: Temperature ([degrees]C) normals (Sample means)

Country Winter Spring Summer Fall

Burkina Faso 23.6 28.3 28.9 24.5
Cameroon 19.4 21.4 20.0 18.9
Egypt 11.7 13.2 24.1 23.4
Ethiopia 18.6 21.5 19.7 18.1
Ghana 21.8 24.8 22.6 21.2
Kenya 18.8 19.7 18.4 19.1
Niger 26.3 30.8 33.9 29.2
Senegal 24.5 29.1 31.5 26.7
South Africa 11.5 15.5 20.7 19.4
Zambia 16.7 21.7 21.1 19.6
Zimbabwe 16.6 21.3 22.5 20.6
Africa-wide 19.8 23.4 24.5 22.2

Note: Seasonal climates have been adjusted so that they are
consistent regardless of hemisphere.

Table 3: Precipitation (mm/mo) normals (Sample means)

Country Winter Spring Summer Fall

Burkina Faso 2.6 15.8 113.8 133.1
Cameroon 60.3 101.9 185.1 228.6
Egypt 12.8 7.0 2.3 3.5
Ethiopia 19.4 49.2 123.7 117.5
Ghana 30.9 59.7 112.4 111.7
Kenya 88.4 103.0 84.3 60.0
Niger 0.8 3.2 64.1 70.6
Senegal 2.2 1.1 47.9 112.7
South Africa 1.8 55.0 86.4 68.8
Zambia 48.3 57.7 108.6 100.7
Zimbabwe 7.5 15.4 138.8 90.0
Africa-wide 25.9 39.8 96.1 102.4

Note: Seasonal climates have been adjusted so that they are
consistent regardless of hemisphere.

Table 4: Net revenues per ha (in US$)

Country Total Dryland Irrigated

Burkina Faso 328 318 538
Cameroon 987 952 1217
Egypt 1660 1660
Ethiopia 199 188 345
Ghana 422 419 496
Kenya 267 255 365
Niger 125 119 227
Senegal 239 237 282
South Africa 811 538 1445
Zambia 134 133 145
Zimbabwe 432 403 643
Average per ha 462 319 1261

Table 5: Regression coefficients of all farms, dryland farms and
irrigated farms without regional dummies

Variable All farms Dryland Irrigated

Winter temperature -83.9 -117.1 * 91.0
Winter temp squared 2.98 * 3.62 * -2.16
Spring temp -18.4 -20.9 -186.3
Spring temp sq -1.61 -1.10 2.21
Summer temp 212.4 ** 118.9 1093.0 **
Summer temp sq -2.74 ** -1.36 -19.01 **
Fall temp -116.6 * -22.8 -1067.4 **
Fall temp sq 1.68 -0.23 22.28 **
Winter precipitation -3.32 ** -4.79 ** 7.86
Winter prec sq 0.018 ** 0.025 ** -0.043
Spring prec 3.42 * 5.38 ** -11.99
Spring prec sq -0.002 -0.017 ** 0.099 *
Summer prec 3.90 ** 3.43 ** 23.84 **
Summer prec sq -0.016 ** -0.015 ** -0.093 **
Fall prec -1.63 * -1.76 ** -19.82 **
Fall prec sq 0.012 ** 0.013 ** 0.074 **
Mean flow 12.20 ** -8.48 * 10.54 **
Farm area -0.074 ** -0.320 ** -0.042 *
Farm area sq 0.000 ** 0.000 ** 0.000 *
Elevation -0.077 ** -0.115 ** 0.234 *
Log (household size) 27.3 * 20.93 64.5
Irrigate (1/0) 251.3 **
Household access to
 electricity (1/0) 117.4 ** 95.47 ** 297.8 **
Soil (geCU) -692.4 ** -393.3 ** -1265.7 **
Soil (ilqHS) -454.4 ** -228.1 ** -1038.0 **
Soil (loMH) -2322.0 ** -1999.8 **
Soil (vcFU) -1065.1 ** -894.3 ** -1585.5 **
Soil (lcMFU) -261.2 ** -250.2 **
Soil (qc) 1642.8 ** 1709.0 **
Soil (ql) -539.9 ** -269.6 **
Soil (lcMS) -2267.6 -5812.3 **
Soil (nd) 370.7 7343.7 **
Soil (lg) -179.0 ** -125.2 **
Soil (frFHS) 992.4 * 3540.0
Soil (ykCMUH) 1279.6 ** -636.3 **
Constant 141.8 702.4 -243.3
N 8459 7238 1221
R2 0.351 0.171 0.29
F 68.59 33.81 52.45

Notes: * significant at 5% level ** significant at 1% level

Table 6: Regression coefficients of all farms, dryland farms and
irrigated farms with regional dummies

Variable All farms Dryland Irrigated

Winter temperature -173.6 ** -106.7 -93.5
Winter temp squared 6.1 ** 3.9 * 4.9
Spring temp 115.1 -82.8 58.7
Spring temp sq -5.0 ** -0.3 -4.1
Summer temp 173.9 ** 198.6 ** 827.5 **
Summer temp sq -1.9 -3.2 * -13.1 *
Fall temp -98.1 -92.4 -824.2 *
Fall temp sq 1.1 1.5 15.3 *
Winter precipitation -2.9 * -1.9 5.8
Winter prec sq 0.0 ** 0.00 0.00
Spring prec 3.5 * 3.6 ** -10.6
Spring prec sq -0.001 -0.011 * 0.091 *
Summer prec 3.4 ** 1.9 * 21.4 **
Summer prec sq -0.012 ** -0.005 -0.086 **
Fall prec -0.5 -0.6 -14.7 **
Fall prec sq 0.0055 * 0.0053 * 0.0586 ***
Mean flow 9.4 ** -5.4 8.8 **
Farm area -0.1 ** -0.3 ** -0.0 **
Farm area sq 0.0 * 0.0 ** 0.0 *
Elevation 0.035 -0.0009 0.229
Log (household size) 22.9 10.1 62.4
Irrigate (1/0) 237.5 **
Household access to
 electricity (1/0) 66.6 ** 47.7 ** 233.2 *
Soil (geCU) -631 ** -287 ** -540
Soil (ilqHS) -387 ** -156 ** -1147 **
Soil (loMH) -2181 ** -1959 **
Soil (vcFU) -1180 ** -1006 ** -1719 **
Soil (lcMFU) -295 ** -241 **
Soil (qc) 1633 ** 1726 **
Soil (ql) -482 ** -188 **
Soil (lcMS) -2153 -6157 **
Soil (nd) 214 7051 **
Soil (lg) -199 ** -154 **
Soil (frFHS) 1428 ** 3212
Soil (ykCMUH) 1071 ** 148
West Africa dummy 136 ** 208 ** -285
North Africa dummy 457 ** 675 *
East Africa dummy -186 ** -154 ** -361
Heavy machinery dummy 51.8 ** 55.5 ** -60.8
Animal power dummy 10.4 49.3 ** -185.5 **
Constant -388 1081 -549
N 8459 7238 1221
R2 0.4 0.2 0.3
F 63.6 32.4 46.3

Notes: * significant at 5% level ** significant at 1% level

Table 7: Marginal impacts of climate on net revenue (US$/ha)
(Evaluated at the mean of the Africa, irrigated and dryland sample)
Without regional dummies (From coefficients in Table 5)

Sample Africa Irrigated Dryland
 regression regression regression

Temperature -28.3 ** 33.6 -23.0 **
 (-1.3) (0.5) (-1.6)

Precipitation 2.65 ** 2.08 2.02 **
 (0.36) (0.06) (0.47)

With regional dummies (From coefficients in Table 6)

Annual Africa Irrigated Dryland
 regression regression regression

Temperature -28.5 ** 35.04 -26.7 **
 (-1.4) (0.6) (-1.9)

Precipitation 3.28 ** 3.82 2.7 **
 (0.44) (0.13) (0.63)

** significant at 1% level

Table 8: Africa-wide impacts from uniform climate scenarios

Impacts 2.5[degrees]C 5[degrees]C
 warming warming

Dryland
[DELTA]Net revenue -72.2 -120.4
($ per ha) (-16%) (-30%)
[DELTA]Total net revenue -22.6 -37.7
(billions $)

Irrigated
[DELTA]Net revenue 110.3 258.8
($ per ha) (9%) (23%)
[DELTA]Total net revenue 1.4 3.4
(billions $)

Total (Africa)
[DELTA]Net revenue -49.2 -95.7
($ per ha) (-11.3%) (-21.9%)
[DELTA]Total net revenue -16.0 -31.2
(billions $)

Impacts 7% 14%
 decreased decreased
 precipitation precipitation
Dryland
[DELTA]Net revenue -14.1 -28.3
($ per ha) (-6%) (-11%)
[DELTA]Total net revenue -4.4 -8.9
(billions $)

Irrigated
[DELTA]Net revenue -15.9 -31.5
($ per ha) (-1.4%) (-2.7%)
[DELTA]Total net revenue -.21 -0.41
(billions $)

Total (Africa)
[DELTA]Net revenue -18.3 -37.2
($ per ha) (-4.2%) (-8,5%)
[DELTA]Total net revenue -5.96 -12.1
(billions $)

Note: Using coefficients in Table 6 and changes to climate that
are uniform across Africa. The numbers in brackets represent the
percentage change in net revenue per hectare relative to the mean
of the sample.

Table 9: Climate predictions of AOGCM models for 2020, 2060 and 2100

Model Current 2020 2060 2100

CCC Temperature 23.29 24.94 26.85 29.96
CCSR 23.29 25.27 26.17 27.39
PCM 23.29 23.95 24.94 25.79

CCC Precipitation 79.75 76.84 71.86 65.08
CCSR 79.75 73.99 76.67 62.44
PCM 79.75 89.58 80.72 83.18

Table 10: Africa-wide impacts from AOGCM climate scenarios

Impacts PCM PCM PCM CCSR CCSR
 2020 2060 2100 2020 2060
Dryland
[DELTA]Net Revenue 231.6 196.2 199.7 -12.8 -82.8
($ per ha) (73.3%) (62.1%) (63.2%) (-4%) (-26%)
[DELTA]Total Net
Revenue 72.4 61.4 62.5 -4.0 -25.9
(billions $)

Irrigated
[DELTA]Net Revenue 468.9 506.5 586.8 76.6 142.3
($ per ha) (40%) (44%) (51%) (6.7%) (12%)
[DELTA]Total Net
Revenue 6.1 6.6 7.6 .99 1.8
(billions $)

Total (Africa)
[DELTA]Net Revenue 277.8 268.2 296.8 38.7 -58.7
($ per ha) (63%) (61.5% (68%) (9%) (-13%)
[DELTA]Total Net
Revenue 90.5 87.4 96.7 12.6 -19.1
(billions $)

Impacts CCSR CCC CCC CCC
 2100 2020 2060 2100
Dryland
[DELTA]Net Revenue -128.9 -72.1 -92.1 -139.0
($ per ha) (-40%) (-22%) (-29.2) (-44%)
[DELTA]Total Net
Revenue -40.3 -22.5 -28.8 -43.5
(billions $)

Irrigated
[DELTA]Net Revenue -420.9 49.1 137.6 297.1
($ per ha) (-36%) (4.3%) (12%) (26%)
[DELTA]Total Net
Revenue -5.5 0.6 1.78 3.9
(billions $)

Total (Africa)
[DELTA]Net Revenue -82.7 -71.1 -72.6 -148.7
($ per ha) (-19%) (-16%) (-17%) (-34%)
[DELTA]Total Net
Revenue -26.9 -23.2 -23.6 -48.4
(billions $)

Note: Using coefficients in Table 6 and AOGCM country specific
climate scenarios. The numbers in brackets represent the
percentage change in net revenue per hectare relative to the mean
of the sample.
COPYRIGHT 2007 The World Bank
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:A RICARDIAN ANALYSIS OF THE IMPACT OF CLIMATE CHANGE ON AFRICAN CROPLAND
Publication:A Ricardian Analysis of the Impact of Climate Change on African Cropland
Date:Aug 1, 2007
Words:3111
Previous Article:5. Conclusions and implications for policy.

Terms of use | Copyright © 2015 Farlex, Inc. | Feedback | For webmasters