Printer Friendly

NASA's Kepler witnesses Einstein's theory at play in far-flung star system.

Washington, April 5 ( ANI ): NASA's Kepler space telescope has witnessed the effects of a dead star bending the light of its companion star- a result of Einstein's general theory of relativity Noun 1. general theory of relativity - a generalization of special relativity to include gravity (based on the principle of equivalence)
Einstein's general theory of relativity, general relativity, general relativity theory
 - in binary, or double, star systems.

The dead star, called a white dwarf, is the burnt-out core of what used to be a star like our Sun. It is locked in an orbiting dance with its partner, a small "red dwarf" star. While the tiny white dwarf is physically smaller than the red dwarf, it is more massive.

"This white dwarf is about the size of Earth but has the mass of the Sun," said Phil Muirhead of the California Institute of Technology California Institute of Technology, at Pasadena, Calif.; originally for men, became coeducational in 1970; founded 1891 as Throop Polytechnic Institute; called Throop College of Technology, 1913–20. , Pasadena, lead author of the findings.

"It's so hefty that the red dwarf, though larger in physical size, is circling around the white dwarf," he stated.

Kepler's primary job is to scan stars in search of orbiting planets. As the planets pass by, they block the starlight by miniscule min·is·cule  
adj.
Variant of minuscule.

Adj. 1. miniscule - very small; "a minuscule kitchen"; "a minuscule amount of rain fell"
minuscule
 amounts, which Kepler's sensitive detectors can see.

Muirhead and his colleagues regularly use public Kepler data to search for and confirm planets around smaller stars, the red dwarfs, also known as M dwarfs. These stars are cooler and redder than our yellow Sun. When the team first looked at the Kepler data for a target called KOI-256, they thought they were looking at a huge gas giant planet eclipsing the red dwarf.

"We saw what appeared to be huge dips in the light from the star, and suspected it was from a giant planet, roughly the size of Jupiter, passing in front," said Muirhead.

To learn more about the star system, Muirhead and his colleagues turned to the Hale Telescope at Palomar Observatory near San Diego. Using a technique called radial velocity, they discovered that the red dwarf was wobbling around like a spinning top. The wobble was far too big to be caused by the tug of a planet. That is when they knew they were looking at a massive white dwarf passing behind the red dwarf, rather than a gas giant passing in front.

The team also incorporated ultraviolet measurements of KOI-256 taken by the Galaxy Evolution Explorer (GALEX GALEX Galaxy Evolution Explorer (NASA) ), a NASA NASA: see National Aeronautics and Space Administration.
NASA
 in full National Aeronautics and Space Administration

Independent U.S.
 space telescope now operated by the California Institute of Technology in Pasadena. The GALEX observations, led by Cornell University, Ithaca, N.Y., are part of an ongoing program to measure ultraviolet activity in all the stars in Kepler field of view, an indicator of potential habitability for planets in the systems. These data revealed the red dwarf is very active, consistent with being "spun-up" by the orbit of the more massive white dwarf.

The astronomers then went back to the Kepler data and were surprised by what they saw. When the white dwarf passed in front of its star, its gravity caused the starlight to bend and brighten by measurable effects.

"Only Kepler could detect this tiny, tiny effect. But with this detection, we are witnessing Einstein's general theory of relativity at play in a far-flung star system," said Doug Hudgins, the Kepler program scientist at NASA Headquarters, Washington.

One of the consequences of Einstein's general theory of relativity is that gravity bends light. Astronomers regularly observe this phenomenon, often called gravitational grav·i·ta·tion  
n.
1. Physics
a. The natural phenomenon of attraction between physical objects with mass or energy.

b. The act or process of moving under the influence of this attraction.

2.
 lensing, in our galaxy and beyond. For example, the light from a distant galaxy can be bent and magnified by matter in front of it. This reveals new information about dark matter and dark energy, two mysterious ingredients in our universe.

Gravitational lensing has also been used to discover new planets and hunt for free-floating planets.

In the new Kepler study, scientists used the gravitational lensing to determine the mass of the white dwarf. By combining this information with all the data they acquired, the scientists were also able to measure accurately the mass of the red dwarf and the physical sizes of both stars.

Kepler's data and Einstein's theory of relativity theory of relativity

Einstein’s contribution to the space-time relationship. [Science: NCE, 843–844]

See : Turning Point
 have together led to a better understanding of how binary stars evolve.

The new finding will appear in the April 20 issue of the Astrophysical Journal. ( ANI )

]]>

Copyright 2013 aninews.in All rights reserved.

Provided by Syndigate.info an Albawaba.com company
COPYRIGHT 2013 Al Bawaba (Middle East) Ltd.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2013 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Publication:Asian News International
Date:Apr 5, 2013
Words:692
Previous Article:Pope Francis' 'Twitter flock' doubles in just 7 weeks.
Next Article:Volcanoes in Jupiter's moon Io located 30 to 60 degrees East from where they were predicted.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters