Printer Friendly
The Free Library
23,396,934 articles and books


Measuring production function and technical efficiency of onion, tomato, and chillies farms in Sindh, Pakistan.

This paper estimates technical efficiency for onion, tomato, and chillies using primary data collected from three districts of Sindh, namely, Hyderabad, Thatta, and Mirpurkhas. The paper also analyses the returns to scale in producing these crops. The functional form of the production function was specified as Cobb-Douglas function with three inputs: land, labour, and capital. The sum of the coefficients on these inputs measures the degree of homogeneity Homogeneity

The degree to which items are similar.
, which determines whether the production function is constant, increasing or decreasing returns to scale. The ordinary least squares method least squares method

Statistical method for finding a line or curve—the line of best fit—that best represents a correspondence between two measured quantities (e.g., height and weight of a group of college students).
 was used for estimating the production function. The t-test was applied for testing the null hypothesis null hypothesis,
n theoretical assumption that a given therapy will have results not statistically different from another treatment.

null hypothesis,
n
 that the degree of homogeneity equals 1. Null hypothesis was maintained at 5 percent significance level for each of the onion, tomato, and chillies crops. These results indicated that the production function has constant returns to scale for these crops. The technical efficiency rating indicates that the onion, tomato, and chillies producers are not technically efficient in producing the selected crops. The average technical efficiency rating is 0.59, 0.74, and 0.83 for onion, tomato, and chillies respectively.

JEL classification: Q12

Keywords: Technical Efficiency, Returns to Scale, Production Function, Onion, Tomato, Chillies

1. INTRODUCTION

Pakistan is blessed with vast agricultural resources on account of its fertile fer·tile
adj.
1. Capable of conceiving and bearing young.

2. Fertilized. Used of an ovum.
 land, well-irrigated plains, huge irrigation irrigation, in agriculture, artificial watering of the land. Although used chiefly in regions with annual rainfall of less than 20 in. (51 cm), it is also used in wetter areas to grow certain crops, e.g., rice.  system and infrastructure, variety of weathers, and centuries old experiences of farming. Agriculture is the single largest sector of the economy which contributes 20.9 percent in GDP GDP (guanosine diphosphate): see guanine.  and employees 43.4 percent of total work force. The estimated GDP of agricultural crops at current factor cost is Rs 1,608,522 million with major crops contributing Rs 579996 million and minor crops valued at Rs 191,835 million for the year 2006-07 [Pakistan (2007)]. The horticulture horticulture [Lat. hortus=garden], science and art of gardening and of cultivating fruits, vegetables, flowers, and ornamental plants. Horticulture generally refers to small-scale gardening, and agriculture to the growing of field crops, usually on a large  crops (fruits, vegetables and condiments) alone contribute Rs 116.645 billion, equivalent to US$ 2 billion, which is 26 percent of the total value of all crops and 81.8 percent of the total value of minor crops. Pakistan annually produces about 12.0 million tons of fruits and vegetables. Fruit and vegetable export trade in Pakistan amounts to US$ 134 million (2003-04), of which fruits account for US$ 102.7 million (76.6 percent), vegetables US$ 25.7 million (19.2 percent) and fruit and vegetable preparations (mostly juices) US$ 5.6 million which is 4.2 percent [Pakistan (2004)].

Onion, tomato and chillies are most common and important kitchen items cooked as vegetables, used as condiments and salad. The consumption of tomato and onion has high income elasticity of demand Income Elasticity of Demand

A measure of the relationship between a change in income and a change in quantity of a good demanded:
. Thus, there will be more demand for these vegetables with population growth, economic growth, and urbanisation. The per capita [Latin, By the heads or polls.] A term used in the Descent and Distribution of the estate of one who dies without a will. It means to share and share alike according to the number of individuals.  consumption of vegetables in Pakistan is very low. People in upper income strata consume well above the national calculated average, while the bulk of the rural population and large percentage of the poorer strata among the urban population consume very few vegetables. Furthermore, Pakistan has a potential to export these products with trade liberalisation under the regime of World Trade Organisation. Production of these vegetables is profitable provided produced efficiently; nevertheless, it requires more labour work. Thus, it provides income support especially to small farmers and employment opportunity for landless land·less  
adj.
Owning or having no land.



landless·ness n.

Adj. 1.
 labourers in rural areas.

Production of these vegetables is complex process where different inputs with different combinations are used. It is a function of farm inputs including land, labour, capital, management practices and other factors. Production not only depends on these resources only but the combinations of different inputs have a great contribution in total productivity. The differences across farms in use of various factors of production and various combinations of factors of production cause the changes in crop yields. These combinations are considered as technology. The input use level and its combinations are different across farms resulting different yields. Furthermore, the there is a wide gap in yields of experimental stations and farmer fields indicating the suboptimal Suboptimal
A solution is called suboptimal if a part of the solution has been optimized without regards to the overall objective.
 use of inputs.

Technical efficiency studies the conversion of physical inputs such as land inputs, labour inputs, and other raw materials and semi finished goods, into outputs. Technical efficiency can be output, reflecting the maximum output that can be achieved from each input, or alternatively representing the minimum input used to produce a given level of output. It describes the current state of technology in any particular industry [Hassan (2004)]. The concept of technical efficiency including price efficiency and production efficiency was initially used by Farell (1957). Further this method has been continued by Hassan (2004), Shah, et al. (1994) and Ali, et al. (1994).

The purpose the paper is to estimate the extent of technical efficiency of onion, tomato and chillies production. The technical efficiency of these vegetables is measured by estimating a production function through stochastic By guesswork; by chance; using or containing random values.

stochastic - probabilistic
 frontier by using Cobb-Douglas production function approach.

2. METHODOLOGY

For this study, primary data were collected from farmers by conducting surveys in three districts of Sindh, namely Hyderabad, Thatta and Mirpurkhas. Hyderabad was selected for onion crop, Thatta for tomato crop and Mirpurkhas for chilies for primary data collection. Hyderabad was selected for onion, because area under onion is highest in Hyderabad among all districts of Sindh [Sindh (2005)]. Similarly Thatta district This article or section needs copy editing for grammar, style, cohesion, tone and/or spelling.
You can assist by [ editing it] now.
 is major tomato producer and Mirpurkhas is major chillies producing district in Sindh [Sindh (2005)]. Sixty farmers for each vegetable were randomly selected from these districts so the total sample size was 180 farmers for this study. Data were collected by survey method using a pre-tested questionnaire.

2.1. Model

The functional form of the production function is specified as Cobb-Douglas function:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII ASCII or American Standard Code for Information Interchange, a set of codes used to represent letters, numbers, a few symbols, and control characters. Originally designed for teletype operations, it has found wide application in computers. ] (1)

Where y is output, [x.sub.1], x.sub.2], [x.sub.3], are inputs, A, [[beta].sub.1], [[beta].sub.2], [[beta].sub.3], are coefficients to be estimated, and [epsilon] is the error. The error term represents all other variables which may affect output.

In the present study, both output and inputs are measured in value terms. Furthermore, output and inputs are measured for the whole farms of onion, tomato and chillies. Output y is value of production in rupees. Input [x.sub.1] is the cost in rupees on labour input for farm operations including ploughing, levelling, weeding, irrigating, and other activities up to harvesting the crop. Input [x.sub.2] is the cost in rupees on capital input incurred for the purchase of fertilisers, pesticides and seedlings. Input [x.sub.3] is the cost in rupees on land input which includes land rent and land tax.

The coefficients of the model in Equation (1) are the measures of elasticity of production. Coefficient coefficient /co·ef·fi·cient/ (ko?ah-fish´int)
1. an expression of the change or effect produced by variation in certain factors, or of the ratio between two different quantities.

2.
 [[beta].sub.1] is the percent change in output resulting from a one percent change in the input [x.sub.1] Similarly, the coefficient on each input is the percent change in output resulting from a one percent change in the input. In a Cobb-Douglas production function, the sum of these coefficients, [[beta].sub.1]+[[beta].sub.2]+[[beta].sub.3], is the degree of homogeneity, which measures whether the production function is constant, increasing, or decreasing returns to scale. Three possibilities exist:

(1) If ([[beta].sub.1]+[[beta].sub.2]+[[beta].sub.3]) = 1, there are constant returns to scale.

(2) If ([[beta].sub.1]+[[beta].sub.2]+[[beta].sub.3]) < 1, there are decreasing returns to scale.

(3) If ([[beta].sub.1]+[[beta].sub.2]+[[beta].sub.3]) > 1, there are increasing returns to scale.

In order to test the significance of ([[beta].sub.1]+[[beta].sub.2]+[[beta].sub.3]), we rearrange re·ar·range  
tr.v. re·ar·ranged, re·ar·rang·ing, re·ar·rang·es
To change the arrangement of.



re
 the terms of the model in Equation (1). Multiplying and dividing it by [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] will keep the model unchanged because we can multiply by 1 :

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (2)

Rearranging the terms of Equation 2:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (3)

Let [[beta].sub.1]+[[beta].sub.2]+[[beta].sub.3] = h, then Equation (3) can be written as:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (4)

This model in Equation (4) shows that the degree of homogeneity can directly be estimated and tested for its significance.

2.2. Returns to Scale

For estimating the model, Equation (4) is transformed into linear equation by taking natural logarithm Natural logarithm

Logarithm to the base e (approximately 2.7183).
:

ln y = [[beta].sub.0] + [[beta].sub.1] ln ([x.sub.1] / [x.sub.3]) + [[beta].sub.2] ln([x.sub.2] / [x.sub.3]) + h ln [x.sub.3] + [epsilon] (5)

Where the constant [[beta].sub.0] = ln(A). The ordinary least square (OLS OLS Ordinary Least Squares
OLS Online Library System
OLS Ottawa Linux Symposium
OLS Operation Lifeline Sudan
OLS Operational Linescan System
OLS Online Service
OLS Organizational Leadership and Supervision
OLS On Line Support
OLS Online System
) method is used for estimating Equation (5) with standard assumptions described in Greene (2003).

2.3. Statistical Frontier Model (Corrected OLS)

The basic production function for each vegetable was defined by the following log transformed equation.

ln y = [[beta].sub.0] + [[beta].sub.1] ln ([x.sub.1] / [x.sub.3]) + [[beta].sub.2] ln([x.sub.2] / [x.sub.3]) + h ln [x.sub.3] (6)

Where

Y = is total revenue productivity of each individual far, while XI, X2 and X3 are labour, capital and land inputs in revenue terms. The above equation was estimated using OLS method for onion, tomato and chillies separately. The intercept was then corrected by shifting the function until no residual is positive and at least one is zero.

The individual technical efficiency score for each vegetable crop is calculated by taking the ratio of actual product to the predicted level of product. The predicted level of product is obtained from the corrected vectors of residuals.
[e.sub.j] = Log [Y.sub.j] - Log [Y.sub.j.sup.*]
j = i, 2, 3 ......... 60 (Onion)
j = 1, 2, 3 ......... 54 (Tomato)
j = 1, 2, 3 ......... 60 (Chillies)
    ej  [less than or equal to] 0
[TE.sub.j] = exp ([e.sub.j]) = [Y.sub.j]/[Y.sub.j.sup.*]


3. RESULTS

3.1. Socioeconomic Profile of the Respondents

Socioeconomic factors are most important and always remain responsible for not only cropping patterns but for production technology and efficient trading system The introduction to this article provides insufficient context for those unfamiliar with the subject matter.
Please help [ improve the introduction] to meet Wikipedia's layout standards. You can discuss the issue on the talk page.
 in a healthy and competitive important. The socioeconomic background has been defined and described in the following section in order to help in understanding the production environment of these vegetables.

This section presents the socioeconomic characteristics of all stakeholders Stakeholders

All parties that have an interest, financial or otherwise, in a firm-stockholders, creditors, bondholders, employees, customers, management, the community, and the government.
 in the production process of onion, chillies and tomato in Sindh province of Pakistan" ranging from producers to the retailers. The information regarding socioeconomic characteristics of the onion, tomato and chillies farmers is presented in Table 1. This table presents the averages and standard errors of the selected indicators, where standard errors indicate the robustness of the mean. The results show that average farm size of the tomato, chillies and tomato farmers was 27, 34.62 and 40.27 acres respectively, while the average family size of tomato producers was 9.93, onion 7.2 and chillies 8.18 members. The table further shows that average age of tomato, onion and chillies farmer was 42.81, 43.65 and 41.68 years respectively. The farming experiences of the selected farmers were 20, 17, and 19 and vegetable farming experience of the selected farmers was 12, 13 and 16 years for tomato, onion and chillies farmers respectively. The distance of farm from road for tomato, onion and chillies producers was 0.93, 1.21 and 2.15 kilometres respectively.

The educational status and farm location of the onion, tomato and chillies farmers is presented in the Table 2. The results revealed that majority of onion (38 percent) and tomato (39 percent) farmers were primarily educated, while the majority (42 percent) of chillies farmers was illiterate ILLITERATE. This term is applied to one unacquainted with letters.
     2. When an ignorant man, unable to read, signs a deed or agreement, or makes his mark instead of a signature, and he alleges, and can provide that it was falsely read to him, he is not bound by
. The higher rate of illiteracy illiteracy, inability to meet a certain minimum criterion of reading and writing skill. Definition of Illiteracy


The exact nature of the criterion varies, so that illiteracy must be defined in each case before the term can be used in a meaningful
 rate in chillies farmers can be the reflection of lower level of literacy in Umerkot district Umerkot District or Umarkot District is a district of Sindh province, Pakistan. Tehsils of Umerkot
  • Kunri
  • Pithoro
  • Samaro
  • Umerkot
History
. The results further revealed that 18 percent of both onion and tomato farmers had their farms located in the tail areas of secondary canal, while 52 percent of chillies farmers have their farms located in the head areas.

3.2. Production Function Analysis

Agricultural production is a complex process particularly vegetable production including onion, chillies and tomato crops. The onion, tomato and chillies production is function of number of variables used in production process. The production of these vegetables depends on natural environment, input use and combination of inputs and management practices. Knowledge of the importance in relative terms of the resource inputs influencing the production of these vegetables is very essential for the producers for introducing desirable changes in their operations at the micro level, and for policy makers for formulating plans for improvement in the productivity of theses vegetables based on sound economic principles at the national level.

For assessment of on-farm production efficiency and returns to scale, production function analysis has been carried out. The production function has been estimated through input and output relationship of these vegetables produced in Sindh Pakistan.

3.3. Returns to Scale

Production function for onion was estimated using the model specified in Equation (1). The Cobb-Douglas production function was estimated to measure the degree of returns to scale for onion producing farms in Hyderabad district Hyderabad District may refer to:
  • Hyderabad District, India
  • Hyderabad District, Pakistan
 of Sindh. The regression results were presented in Table 3. The table presented coefficient estimates, their standard error, t statistics, and p-values for testing the significance. The 2 percent critical value of Student's t distribution for sample size of 60 was 2.00. First, t-statistics were presented for testing the null hypothesis that the coefficients are zero. As t-statistics are greater than 2.00, the test rejected the null hypothesis and coefficients were significantly different from zero. For testing that the production function was constant returns to scale, the null hypothesis that h=l was also tested. In this case, t statistic t statistic, t distribution

the statistical distribution of the ratio of the sample mean to its sample standard deviation for a normal random variable with zero mean.
 and p-value were presented in parentheses. As the t-statistic in absolute terms (Alg.) such as are known, or which do not contain the unknown quantity.

See also: Absolute
 was less than 2.00, the test maintained the null hypothesis, and the coefficient h was equal to 1 by this test. As described in methodology, It = [[beta].sub.1] + [[beta].sub.2] + [[beta].sub.3], which measured the degree of geneuity. As [[beta].sub.1] + [[beta].sub.2] + [[beta].sub.3] = 1 by the above test, these results showed that the production function for onion exhibited constant returns to scale.

The Cobb-Douglas production function was estimated to measure the degree of returns to scale for tomato producing farms in Thatta district of Sindh. The results showed that the tomato production exhibited constant returns to scale. These results indicated that if all inputs are increased proportionately pro·por·tion·ate  
adj.
Being in due proportion; proportional.

tr.v. pro·por·tion·at·ed, pro·por·tion·at·ing, pro·por·tion·ates
To make proportionate.
, the output is increased by the same proportion.

The above results presented in Table 5 shows that the chillies production exhibited constant returns to scale, hence the null hypothesis is accepted. These results also indicated that if all inputs are increased proportionately, the output is increased by the same proportion.

3.4. Technical Efficiency

Technical efficiency is a way to measure the level and extent of inefficiencies in production system. Technical efficiency describes the relationship between output and input by considering different combinations of input for output. Technical efficiency was measured by using the production function estimates. The intercept was than corrected by shifting the function until no residual is positive and at least one is zero. By doing this the frontier function for onion, tomato and chillies has been worked out as under:

Onion [Y.sup.*] = 2.41 + 0.531 [X.sub.1]/[X.sub.3] + 0.262 [X.sub.2]/[X.sub.3] + 0.989[X.sub.3]

Tomato [Y.sup.*] = 2.8 + 0.262 [X.sub.1]/[X.sub.3] + 0.256 [X.sub.2]/[X.sub.3] + 0.986[X.sub.3]

Chillies [Y.sup.*] = 2.239 + 0.392 [X.sub.1]/[X.sub.3] + 0.593 [X.sub.2]/[X.sub.3] + 0.978[X.sub.3]

The above frontier function indicate that [Y.sup.*] is at higher level from the given level of inputs and combinations of input for all the three vegetables. Given on the actual inputs on a farm for each vegetable the actual Y would be equal to the predicted [Y.sup.*], only if the farm operates on the frontier On the Frontier: A Melodrama in Two Acts, by W. H. Auden and Christopher Isherwood, was the third and last play in the Auden-Isherwood collaboration, first published in 1938.  production function, otherwise its actual productivity will be less than the predicted revenue productivity.

The individual technical efficiency score for each vegetable crop is calculated by taking the ratio of actual product to the predicted level of product. The predicted level of product is obtained from the corrected vectors of residuals.
[e.sub.j] = Log [Y.sub.j] - Log [Y.sub.j.sup.*]
j = 1, 2, 3 ......... 60 (Onion)
j = 1, 2, 3 ......... 54 (Tomato)
j = 1, 2, 3 ......... 60 (Chillies)
    ej [less than or equal to] 0
[TE.sub.j] = exp ([e.sub.j]) = [Y.sub.j]/ [Y.sub.j.sup.*]


The following Table 6 presents the frequency distribution of individual farmers of onion, tomato and chillies crop technical efficiency. The mean efficiency of chillies, tomato and onion was 83, 74 and 59 respectively. The minimum efficiency ratio for onion, tomato and chillies was 30, 51 and 60 respectively. Results further revealed that chillies farmers were at average producing 17 percent lower than the efficiency level while tomato and onion producers were 26 and 41 percent lower than the efficiency level. One reason of onion farmers being less efficient was the unstable and unreliable prices of output and some times the highest prices of seed and seedlings. The reason of efficiency in chillies could be that it had standard practices in input use and stable prices.

The results show that mostly (40.1 percent) of onion farmers lied between (50-65) in the efficiency rating ratio, while the majority of chillies farmers were close to the maximum level of efficiency rating lying higher than 75. Majority of the tomato farmers (25 percent) were also in higher efficiency rating ratio ranging from 70-80.

4. SUMMARY AND CONCLUSION

4.1. Production Function and Returns to Scale

Measuring the degree of returns to scale is of significant importance for understanding the agriculture sector and the long-run changes in the structure of agriculture including fragmentation (1) Storing data in non-contiguous areas on disk. As files are updated, new data are stored in available free space, which may not be contiguous. Fragmented files cause extra head movement, slowing disk accesses. A defragger program is used to rewrite and reorder all the files.  or concentration of farmland. Furthermore, it is useful for making policies that affect the welfare of the whole society, such as those concerning land reforms and government support services support services Psychology Non-health care-related ancillary services–eg, transportation, financial aid, support groups, homemaker services, respite services, and other services . The degree of returns to scale measures the change in output when all inputs are changed proportionately. For a given proportional increase of all inputs, if output is increased by the same proportion, there are constant returns to scale; if output is increased by a larger proportion, the firm enjoys increasing returns to scale; and if output is increased by a smaller proportion, there are decreasing returns to scale [Varian (1992)]. Cobb-Douglas type of production function has been used for measuring returns to scale. This approach is commonly used for estimation of input and output relationships [Upton (1979); Heady head·y  
adj. head·i·er, head·i·est
1.
a. Intoxicating or stupefying: heady liqueur.

b.
 and Dillon (1961); Chennareddy (1967)]. This method is easy to interpret results and it also provides a sufficient degree of freedom for statistical testing [Heady and Dillon, (1961); Griliches (1963)]. Although there have been many studies in Pakistan on production function estimation for yield or per hectare hectare (hĕk`târ, –tär), abbr. ha, unit of area in the metric system, equal to 10,000 sq m, or about 2.47 acres.  output, very few studies have estimated production function for total output. [Iqbal, et al. (2003)] evaluated the impact of credit on agricultural production in Pakistan. Hussain (1991) estimated production function for measuring the degree of returns to scale in Peshawar valley. Khan and Akbari (1986) used production function approach in studying the impact of agricultural research and extension on productivity of agriculture in Pakistan. All the coefficients in the model were significant and he suggested more investment in research and extension. There have been no previous studies on returns to scale in Sindh province of Pakistan.

The results of returns to scale in onion, tomato and chillies suggested constant returns to scale. The 5 percent critical value of Student's t distribution for sample size of 60 is 2.00. First, t-statistics are presented for testing the null hypothesis that the coefficients are zero. As t-statistics are greater than 2.00, the test rejects the null hypothesis and coefficients are significantly different from zero. For testing that the production function is constant returns to scale, we also test the null hypothesis that h=1. In this case, t-statistic and p-value are presented in parentheses. As the t-statistic in absolute terms is less than 2.00, the test maintains the null hypothesis, and the coefficient h is equal to 1 by this test. As described in methodology, h = [[beta].sub.1] + [[beta].sub.2] + [[beta].sub.3], which measures the degree of geneuity. As [[beta].sub.1] + [[beta].sub.2] + [[beta].sub.3] = 1 by the above test, these results show that the production function exhibits constant returns to scale. These results of the present study are consistent with the results by Hussain (1991), who also found that agricultural production function exhibits constant returns to scale.

4.2. Technical Efficiency

Farm efficiency is one of the important issues of production economics and production function analysis. Technical efficiency is a way to measure the level and extent of inefficiencies in production system. Technical efficiency describes the relationship between output and input by considering different combinations of input for output. Since the pioneering work on technical efficiency by Farrell in 1957, which drew upon the work of Debren (1951) considerable effort has been directed at refining the measurement of technical efficiency.

The mean efficiency of chillies, tomato and onion was 0.83, 0.74 and 0.59 respectively. The minimum efficiency ratio for onion, tomato and chillies was 0.30, 0.51 and 0.60 respectively. Majority (40.1 percent) of onion farmers lied between (0.50-0.65) in the efficiency rating ratio, while the majority of chillies farmers were close to the maximum level of efficiency rating lying higher than 0.75. Majority of the tomato farmers (25 percent) also fall in higher efficiency rating ratio ranging from 0.70-0.80. Ali and Flinn (1989) used a stochastic profit frontier of the modified translog type to examine the level of profit inefficiency in Basmati Rice bas·ma·ti rice  
n.
An aromatic long-grain rice from India.



[Hindi bsmat
 production in Pakistan. They concluded that poor education, lack of credit, late application of fertiliser and shortage of irrigation water significant factors in profit losses. Hussain (1991) measured and compared economic efficiencies of the four irrigated cropping regions in the Punjab province Punjab Province may refer to:
  • Punjab (Pakistan) current province in Pakistan
  • Punjab (India) former province in India
 of Pakistan by using probabilistic production function. The analysis showed that the average technical efficiency ranged from 80 percent in the rice region and 87 percent in the sugarcane region. This implied that farmers' income could be improved by 13 to 20 percent with the existing level of available resources. Parikh, Ali and Shah (1995) used SFA See sales force automation.

SFA - Sales Force Automation
 and concluded that the mean level of inefficiency was 12 percent ranging from 3 to 41 percent. They suggested education, extension and credit as means to reduce inefficiency. The technical efficiency estimates of this study obtained by using SFA method are consistent with the findings of Hassan (2004), Hussain (1999), Bettese (1997), and Parikh, All, and Shah (1999).

Lastly it can be concluded that returns to scale in vegetable production are constant showing that if we increase the inputs, the output will increase with the same proportion. Further, it can be concluded that the vegetable production is not an efficient one. Therefore, it is suggested that production of agriculture particularly vegetables be increased without consolidation of land so that the benefits are distributed among a large number of households, and agricultural support services be made available to all farmers particularly the small farmers in order to increase the total production. The production can further be increased by introducing improved technologies suitable for small farmers and by taking steps to add in the efficiency of vegetable production.

REFERENCES

Ali, F. A. Parikh and M. K. Shah (1994) Measuring Profit Efficiency Using Behavioural Adj. 1. behavioural - of or relating to behavior; "behavioral sciences"
behavioral
 and Stochastic Frontier Approaches. Applied Economics 26, 181-188.

Ali, M., and J. C. Flinn (1989) Profit Efficiency among Basmati Rice Producers in Pakistan, Punjab. American Journal of Agricultural Economics Agricultural economics originally applied the principles of economics to the production of crops and livestock - a discipline known as agronomics. Agronomics was a branch of economics that specifically dealt with land usage.  71, 303-310.

Battese, G. E. and G. S. Korra (1977) Estimation of Production Frontier Model with Application with Pastoral Zone of Eastern Australia. Australian Journal of Agricultural Economics 21,169-179.

Chennareddy, V. (1967) Production Efficiency in India Agriculture. Journal of Farm Economics 44:4, 816-820.

Debreu, G. (1951) The Coefficient of Resource Utilisation. Econometrica 19:2,73-92

Farrell, M. J. (1957) The Measurement of Productive Efficiency. Journal of Royal Statistics Society 120, 253-81.

Greene, W. H. (2003) Econometric e·con·o·met·rics  
n. (used with a sing. verb)
Application of mathematical and statistical techniques to economics in the study of problems, the analysis of data, and the development and testing of theories and models.
 Analysis (5th ed.) Singapore: Pearson Education Pearson Education is an international publisher of textbooks and other educational material, such as multimedia learning tools. Pearson Education is part of Pearson PLC. It is headquartered in Upper Saddle River, New Jersey. , Inc.

Griliches, Z. (1963) Estimation of Aggregate Agricultural Production Function from Cross Sectional sec·tion·al  
adj.
1. Of, relating to, or characteristic of a particular district.

2. Composed of or divided into component sections.

n.
 Data. Journal of Farm Economics 34: 4, 208-210.

Hassan, S. (2004) An Analysis of Technical Efficiency of Wheat Farmers in the Mixed Farming System of the Punjab Pakistan. (Ph.D. Thesis). Department of Environmental and Resource Economics (Farm Management). University of Agriculture, Faisalabad This article or section is written like an .
Please help [ rewrite this article] from a neutral point of view.
Mark blatant advertising for , using .
.

Heady, E. O. and J. Dillon (1961) Agricultural Production Function. Ames: Iowa State University Academics
ISU is best known for its degree programs in science, engineering, and agriculture. ISU is also home of the world's first electronic digital computing device, the Atanasoff–Berry Computer.
 Press.

Hussain, A. (1991) Resource Use, Efficiency, and Returns to Scale: A Case Study of the Peshawar Valley. (Staff Paper). Department of Agricultural and Applied Economics, University of Minnesota (body, education) University of Minnesota - The home of Gopher.

http://umn.edu/.

Address: Minneapolis, Minnesota, USA.
, Twin Cities. pp. 91-29.

Hussain, M. S. (1999) An Analysis of Cotton Farmers in Punjab Province of Pakistan. (Ph.D. Thesis). Graduate School of Agriculture and Resource Economics, University of New England The University of New England can refer to:
  • University of New England, Maine, in Biddeford, Maine
  • University of New England, Australia, in New South Wales
, Aramidale, Australia.

Iqbal, M., Munir Ahmad, and Kalbe Abbas (2003) The Impact of Institutional Credit on Agricultural Production in Pakistan. The Pakistan Development Review 42:4, 469-85.

Khan, A. H. and A. H. Akbari (1986) Impact of Agricultural Research and Agricultural Extension Agricultural extension was once known as the application of scientific research and new knowledge to agricultural practices through farmer education. The field of extension now encompasses a wider range of communication and learning activities organised for rural people by  on Crop Productivity in Pakistan: A Production Function Approach. World Development 14, 757-62.

Pakistan, Government of (2004) Agricultural Statistics of Pakistan 2003-04. Islamabad: Ministry of Food Agriculture and Livestock (Economic Wing).

Pakistan, Government of (2007) Pakistan Economic Survey 2005-06. Islamabad: Finance Division, Economic Advisor's Wing.

Parikh, A., F. Ali, and M. K. Shah (1995) Measurement of Economic Efficiency in Pakistan Agriculture. American Journal of Agricultural Economics 77, 675-85.

Shah, M. K., F. Ali, and H. Khan (1994) Technical Efficiency of Major Crops in the North-West Frontier of Pakistan. Sarhad Journal of Agriculture 10:6, 613-621.

Sindh, Government of (2005) Development Statistics of Sindh 2003-2004. Karachi: Bureau of Statistics.

Upton, M. (1979) The Economics of Tropical Farming System. Cambridge: Cambridge University Cambridge University, at Cambridge, England, one of the oldest English-language universities in the world. Originating in the early 12th cent. (legend places its origin even earlier than that of Oxford Univ. .

Vairan, Hal R. (1992) Microeconomic mi·cro·ec·o·nom·ics  
n. (used with a sing. verb)
The study of the operations of the components of a national economy, such as individual firms, households, and consumers.
 Analysis (3rd ed). New York New York, state, United States
New York, Middle Atlantic state of the United States. It is bordered by Vermont, Massachusetts, Connecticut, and the Atlantic Ocean (E), New Jersey and Pennsylvania (S), Lakes Erie and Ontario and the Canadian province of
: W.W. Norton and Company.

Fateh M. Mari <fatehpk@yahoo.com> is Assistant Professor, Department of Agricultural Economics, Sindh Agriculture University Sindh Agriculture University, Tandojam is located at Tando Jam, Sindh, Pakistan.

The university is an academic complex of five faculties, two centres, one constituent college and Directorate of Advanced Studies and Research.
. Tando Jam Tando Jam is a city located in Sindh at about 20 Km away from Hyderabad and 5 Km from Tando Kaiser (world fame mango heaven), Pakistan, between Hyderabad and Mirpur Khas. Sindh Agriculture University is also located at Tando Jam. , Pakistan. Heman D. Lohano <loha0002@unm.edu> is Associate Professor, Institute of Business Administration, Karachi The Institute of Business Administration, usually referred to by its acronym IBA, is a university in Karachi, Pakistan. It is the oldest business school in the world outside of North America, and is considered one of the premier business schools in Pakistan. , Pakistan.
Table 1
Socioeconomic Characteristics of Onion, Tomato, and Chillies Farmers

                                   Tomato               Onion

Characteristics                Mean    STD Error   Mean    STD Error

Farm Size                       27       7.99      34.62     4.57
Family Size                    9.93      0.60      7.20      1.01
Age                            42.81     1.86      43.65     1.96
Farming Experience             20.17     1.68       17       1.39
Vegetable Farming Experience   12.11     0.97      13.23     0.95
Distance from Road             0.93      0.15      1.21      0.14

                                  Chilies

Characteristics                Mean    STD Error

Farm Size                      40.27     3.87
Family Size                    8.18      1.13
Age                            41.68     1.57
Farming Experience             19.15     1.39
Vegetable Farming Experience   16.38     1.20
Distance from Road             2.15      0.31

Table 2
Educational and Location-wise Status of the Sampled Producers

                            Onion                     Chillies

Characteristics   Frequency    Percentage   Frequency    Percentage

Education
  Illiterate          11           18           25           42
  Primary             23           38           14           23
  Secondary           13           22           11           18
  Higher              13           22           10           17
  Total               60          100           GO          100

Farm Location
  Head                23           38           31           52
  Middle              26           43           18           30
  Tail                11           18           11           18
  Total               60          100           60          100

                          Tomato

Characteristics   Frequency    Percentage

Education
  Illiterate          9            17
  Primary             21           39
  Secondary           19           35
  Higher              5            9
  Total               54          100

Farm Location
  Head                22           41
  Middle              16           30
  Tail                16           30
  Total               54          100

Table 3
Regression Results for Production Function
of Onion with Dependent Variable Ln(Y)

                                  Coefficient   Standard
Regressor         Coefficient      Estimate      Error

Constant         [[beta].sub.0]      2.043       0.171

ln ([x.sub.1]/   [[beta].sub.1]      0.531       0.108
[x.sub.3])

ln ([x.sub.2]/   [[beta].sub.2]      0.262       0.118
[x.sub.3])

ln [x.sub.3]           h             0.989       0.015

Regressor        t-statistics    p-value

Constant          11.922         0.000

ln ([x.sub.1]/     4.924         0.000
[x.sub.3])

ln ([x.sub.2]/     2.229         0.030
[x.sub.3])

ln [x.sub.3]       67.237        0.000
                  (-0.715) *    (0.600) *

* t-statistic and p value given in parentheses are for the null
hypothesis that the coefficient is equal to l. The remaining
t-statistics and p-values are for the null hypothesis that
coefficient is zero.

The results showed that the onion production exhibits constant
returns to scale as h = 0.989, t-statistics and p-values were
significant. These results indicated that if all inputs are
increased proportionately, the output is increased by the same
proportion.

Table 4
Regression Results for Production Function of Tomato
with Dependent Variable ln(y)

                                  Coefficient   Standard
Regressor         Coefficient      Estimate      Error

Constant         [[beta].sub.0]      2.491       0.197

ln ([x.sub.1]/   [[beta].sub.1]      0.262       0.104
[x.sub.3])

ln ([x.sub.2]/   [[beta].sub.2]      0.256       0.059
[x.sub.3])

ln [x.sub.3]           h             0.986       0.021

Regressor        t-statistics    p-value

Constant            12.631        0.000

ln ([x.sub.1]/      2.515         0.015
[x.sub.3])

ln ([x.sub.2]/      4.329         0.000
[x.sub.3])

ln [x.sub.3]        46.215        0.000
                   (-0.651 *)    (0.518 *)

* t-statistic and p-value given in parentheses are for the null
hypothesis that the coefficient is equal to 1. The remaining
t-statistics and p-values are for the null hypothesis that
coefficient is zero.

Table 5
Regression Results for Production Function of Chillies
with Dependent Variable ln(y)

                                  Coefficient   Standard
Regressor         Coefficient      Estimate      Error

Constant         [[beta].sub.0]      2.051       0.203

In ([x.sub.1]/   [[beta].sub.1]      0.392       0.098
[x.sub.3])

In ([x.sub.2]/   [[beta].sub.2]      0.594       0.105
[x.sub.3])

In [x.sub.3]           h             0.978       0.019

Regressor        t-statistics    p-value

Constant            10.115       0.000

In ([x.sub.1]/       3.983       0.000
[x.sub.3])

In ([x.sub.2]/       5.628       0.000
[x.sub.3])

In [x.sub.3]        50.482       0.000
                  (-1.135 *)    (0.261 *)

* t-statistic and p-value given in parentheses are for the null
hypothesis that the coefficient is equal to 1. The remaining
t-statistics and p-values are for the null hypothesis that
coefficient is zero.

Table 6
Frequency Distribution of Technical Efficiency of Individual
Farms in Statistical Frontier Production Function

                      Onion               Tomato
Efficiency
Rating             No    Percentage    No    Percentage

>30<35             4        6.7        0        0.0
>35<40             6        10.0       0        0.0
>40<45             4        6.7        0        0.0
>45<50             3        5.0        0        0.0
>50<55             9        15.0       1        1.9
>55<60             9        15.0       1        1.9
>60<64             7        11.7       7        13.0
>65<69             5        8.3        9        16.7
>70<74             5        8.3        15       27.8
>75<79             3        5.0        10       18.5
>80<84             0        0.0        3        5.6
>85<89             1        1.7        4        7.4
>90<94             2        3.3        2        3.7
>95 [less than
  or equal
  to] 100          2        3.3        2        3.7
Mean              0.59                0.74
Min               0.30                0.51
Max               1.00                1.00

                      Chillies
Efficiency
Rating             No    Percentage

>30<35             0        0.0
>35<40             0        0.0
>40<45             0        0.0
>45<50             0        0.0
>50<55             0        0.0
>55<60             0        0.0
>60<64             2        3.3
>65<69             4        6.7
>70<74             5        8.3
>75<79             11       18.3
>80<84             11       18.3
>85<89             11       18.3
>90<94             9        15.0
>95 [less than
  or equal
  to] 100          7        11.7
Mean              0.83
Min               0.60
Max               1.00
COPYRIGHT 2007 Reproduced with permission of the Publications Division, Pakistan Institute of Development Economies, Islamabad, Pakistan.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2007 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:AGRICULTURE
Author:Mari, Fateh M.; Lohano, Heman D.
Publication:Pakistan Development Review
Article Type:Report
Geographic Code:9PAKI
Date:Dec 22, 2007
Words:5316
Previous Article:Natural resource conservation, poverty alleviation, and farmer partnership.
Next Article:Energy use for economic growth: cointegration and causality analysis from the agriculture sector of Pakistan.
Topics:

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters