Printer Friendly
The Free Library
22,710,190 articles and books

Influence of Graphite Morphology, Matrix Structure on Gray Iron Machining.



This study, which details the influence of microstructure mi·cro·struc·ture  
n.
The structure of an organism or object as revealed through microscopic examination.


microstructure
Noun

a structure on a microscopic scale, such as that of a metal or a cell
 on the mechanism of chip formation, provides information to improve machining quality and cost.

The machinability of gray iron is influenced by a complex interaction between the matrix structure and graphite graphite (grăf`īt), an allotropic form of carbon, known also as plumbago and black lead. It is dark gray or black, crystalline (often in the form of slippery scales), greasy, and soft, with a metallic luster.  morphology morphology

In biology, the study of the size, shape, and structure of organisms in relation to some principle or generalization. Whereas anatomy describes the structure of organisms, morphology explains the shapes and arrangement of parts of organisms in terms of such
. Past studies have examined aspects of gray iron machinability, however, the influence of microstructure on the mechanisms of chip formation during machining remains elusive.

Gray iron's soft graphite phase provides the metal's free-machining characteristics. However, the shape, amount and distribution of flake flake

an epidermal scale.

flake Cocaine, see there
 graphite in gray iron has a major impact on its free-machining attributes. The graphite is soft with negligible hardness. It provides discontinuances that are thought to facilitate chip breaking. In addition, graphite flakes could result in areas of high stress concentration and paths of easy matrix fracture during machining.

Increasing the amount of graphite has been reported to reduce tool forces during machining. However, an excess of coarse graphite adversely affects mechanical properties and leads to poor surface finish. High carbon equivalent (CE) values and low cooling rates favor the formation of graphite and, consequently, can influence machining characteristics. Hypoeutectic hy·po·eu·tec·tic  
adj. Chemistry
Having the minor component present in a smaller amount than in the eutectic composition of the same components.
 irons and irons subjected to rapid solidification so·lid·i·fy  
v. so·lid·i·fied, so·lid·i·fy·ing, so·lid·i·fies

v.tr.
1. To make solid, compact, or hard.

2. To make strong or united.

v.intr.
 rates exhibit small, short flakes that disrupt the matrix to a lesser extent and are more desirable when maximum tensile tensile,
adj having a degree of elasticity; having the ability to be extended or stretched.
 properties and a fine smooth surface finish are required.

In gray iron, five basic classifications of graphite flakes ranging from Type A to E have been established jointly by ASTM ASTM
abbr.
American Society for Testing and Materials
 and AFS A distributed file system for large, widely dispersed Unix and Windows networks from Transarc Corporation, now part of IBM. It is noted for its ease of administration and expandability and stems from Carnegie-Mellon's Andrew File System.

AFS - Andrew File System
. If solidification takes place at slow cooling rates in the presence of a number of potent nuclei nuclei /nu·clei/ (noo´kle-i) [L.] plural of nucleus.

nu·cle·i
n.
Plural of nucleus.



nuclei

plural of nucleus.
, little undercooling occurs and Type A graphite--thick flakes with limited branching randomly distributed and oriented o·ri·ent  
n.
1. Orient The countries of Asia, especially of eastern Asia.

2.
a. The luster characteristic of a pearl of high quality.

b. A pearl having exceptional luster.

3.
 throughout the iron matrix--is formed. Under conditions of greater undercooling, faster solidification rates occur with less effective substrates and finer Type D graphite is formed. Type D graphite is found to reside in the interdendritic regions and is randomly distributed.

The randomly oriented Type A graphite promotes good mechanical properties and has been reported to improve machinability. Medium-size Type A graphite provides higher tensile strength tensile strength

Ratio of the maximum load a material can support without fracture when being stretched to the original area of a cross section of the material. When stresses less than the tensile strength are removed, a material completely or partially returns to its
 and elongation elongation, in astronomy, the angular distance between two points in the sky as measured from a third point. The elongation of a planet is usually measured as the angular distance from the sun to the planet as measured from the earth.  than does Type D graphite, which has flakes that are fine-tipped and "more stress concentrating." In addition, Type A graphite irons also exhibit the greatest ductility ductility, ability of a metal to plastically deform without breaking or fracturing, with the cohesion between the molecules remaining sufficient to hold them together (see adhesion and cohesion). Ductility is important in wire drawing and sheet stamping. . The effect of Type A graphite on mechanical properties becomes more pronounced as the CE increases. The small Type D flakes have been reported to promote a fine machined surface finish by minimizing surface pitting.

This article studies the influence of graphite morphology and matrix structure on the micromechanism of chip formation during the machining of gray iron. The role of graphite size and shape is studied at a microscopic microscopic /mi·cro·scop·ic/ (mi?kro-skop´ik)
1. of extremely small size; visible only by the aid of the microscope.

2. pertaining or relating to a microscope or to microscopy.
 level to determine its impact during machining. In addition, the interaction of graphite with the matrix structure and how this affects machining of gray iron is explored. Lastly, the question of graphite lubrication lubrication, introduction of a substance between the contact surfaces of moving parts to reduce friction and to dissipate heat. A lubricant may be oil, grease, graphite, or any substance—gas, liquid, semisolid, or solid—that permits free action of  when machining gray irons See under Fire,

n. os>

See also: Iron
 also is examined. Through this study, foundries will better understand the effects of machining on gray iron and be able to deliver castings that machine better and are more cost-effective to the customer.

Experimental Procedure

Two experimental methods were used to accomplish the objectives of the study--slow speed and quick-stop device (QSD QSD Your Keying Is Defective (Radiotelegraphy)
QSD Quality Services Division (Oak Ridge National Laboratory)
QSD Quality Support Division
QSD Quality Systems Division
QSD Quantity Safety Distance
) machining.

Slow-Speed Machining--These tests were conducted on polished and etched etch  
v. etched, etch·ing, etch·es

v.tr.
1.
a. To cut into the surface of (glass, for example) by the action of acid.

b.
 specimens using an orthogonal At right angles. The term is used to describe electronic signals that appear at 90 degree angles to each other. It is also widely used to describe conditions that are contradictory, or opposite, rather than in parallel or in sync with each other.  cutting machine. The machining conditions for these slow-speed tests, as well as subsequent QSD tests, are shown in Table 1.

For all tests, the cutting speed, depth of cut and rake angle were held constant. The only independent variable was the material under study. The surface deformation deformation /de·for·ma·tion/ (de?for-ma´shun)
1. in dysmorphology, a type of structural defect characterized by the abnormal form or position of a body part, caused by a nondisruptive mechanical force.

2.
 characteristics of the graphite and the matrix during slow machining of polished and etched specimens were examined from video footage. Quantitative analysis Quantitative Analysis

A security analysis that uses financial information derived from company annual reports and income statements to evaluate an investment decision.

Notes:
 of the deformation and fracture of the microstructures ahead of and beneath the tool were performed directly from the video images. The chip thickness and chip length also were estimated, as well as the machining "shear shear: see strength of materials.
Shear

A straining action wherein applied forces produce a sliding or skewing type of deformation.
 angle."

QSD Machining--The second set of experiments involved dry machining tests at a normal production cutting speed on a lathe lathe (lāth), machine tool for holding and turning metal, wood, plastic, or other material against a cutting tool to form a cylindrical product or part. It also drills, bores, polishes, grinds, makes threads, and performs other operations.  fitted with a QSD. The QSD simulated semi-orthogonal cutting and allowed the cutting tool to be rapidly removed during high-speed machining. The process leaves a representative chip still in place with the chip root undisturbed un·dis·turbed  
adj.
Not disturbed; calm.


undisturbed
Adjective

1. quiet and peaceful: an undisturbed village

2.
. Simultaneously, cutting force data signals were collected with the help of a dynamometer dynamometer /dy·na·mom·e·ter/ (di?nah-mom´e-ter) an instrument for measuring the force of muscular contraction.

dy·na·mom·e·ter
n.
An instrument for measuring the degree of muscular power.
. The cutting conditions for the experiments also are shown in Table 1.

At this point, the specimens underwent the same analysis steps.

Specimen Analysis--The side face of the specimen was prepared by polishing and etching etching, the art of engraving with acid on metal; also the print taken from the metal plate so engraved. In hard-ground etching the plate, usually of copper or zinc, is given a thin coating or ground of acid-resistant resin.  prior to machining. After QSD machining, the specimens were analyzed an·a·lyze  
tr.v. an·a·lyzed, an·a·lyz·ing, an·a·lyz·es
1. To examine methodically by separating into parts and studying their interrelations.

2. Chemistry To make a chemical analysis of.

3.
 using a scanning electron microscopy electron microscopy

Technique that allows examination of samples too small to be seen with a light microscope. Electron beams have much smaller wavelengths than visible light and hence higher resolving power.
 (SEM). The photomicrographs obtained from the SEM then were used to examine chip formation, the root of the chip, the newly cut surface and the material condition ahead of and underneath the cutting tool. The fracture events around the tool also were characterized. The extent of fracture and matrix deformation ahead of and beneath the cutting tool were used to estimate the size of the machining-affected region. Cutting forces typically measured during conventional machinability studies also were obtained. The forces gave an indication of the magnitude of the stress to fracture in the primary shear plane and the resultant compressive stresses Compressive stress is the stress applied to materials resulting in their compaction (decrease of volume). When a material is subjected to compressive stress, then this material is under compression. Usually, compressive stress applied to bars, columns, etc. leads to shortening.  exerted on the tool.

Specimen Characteristics--The microstructures and chemical composition of the five gray irons with different matrix structures are detailed in Tables 2 and 3.

The gray iron specimens had both Type A and D graphite flakes with either pearlite pearl·ite  
n.
1. A mixture of ferrite and cementite forming distinct layers or bands in slowly cooled carbon steels.

2. Variant of perlite.

Noun 1.
 or ferrite fer·rite  
n.
1. Any of a group of nonmetallic, ceramiclike, usually ferromagnetic compounds of ferric oxide with other oxides, especially such a compound characterized by extremely high electrical resistivity and used in computer memory
 matrix structures (Figs. la-e). Specimen 1 was Type A graphite in a fine pearlitic matrix (ASTM A48 Class 40). Specimen 2 consisted of Type A graphite flakes in a coarse pearlitic matrix (ASTM A48 Class 30). Specimen 3 was similar to 2 but had longer graphite flakes and a coarser pearlitic matrix. Specimen 4 consisted of Type D graphite in a predominantly pearlitic matrix. Specimen 5 also was Type D graphite in a ferrite matrix.

Slow-Speed Machining Results

The slow orthogonal machining experiments showed that fracture events ahead of the cutting tool dominate chip formation in gray irons. The mechanisms of fracture ahead of and beneath the tool when cutting the Type A graphite specimens 1, 2 and 3 were similar. During slow-speed machining, video pictures indicated that widespread fracture events occurred along graphite flakes ahead of and beneath the cutting tool. These deformation and fracture events took place at large distances ahead of and on the underside of the tool. Separation of fracture chips from the specimen occur at frequent intervals ahead of the tool, resulting in discontinuous discontinuous /dis·con·tin·u·ous/ (dis?kon-tin´u-us)
1. interrupted; intermittent; marked by breaks.

2. discrete; separate.

3. lacking logical order or coherence.
 chips.

The deformation and fracture ahead of and beneath the tool in specimen 2 were more extensive compared to those in specimen 1. This observation may be attributed to the nature of the graphite flakes as well as the coarseness of the matrix structure. In addition, the pearlitic matrix structure for specimen 2 also was coarser than in specimen 1 and had a higher hardness.

The coarsest graphite structure was found in specimen 3. The video pictures showed that the fracture in specimen 3 occurred along the graphite flakes, and the material literally "collapsed in all directions" ahead of and underneath the cutting tool. Consequently, the deformation and fracture around the tool for specimen 3 was more extensive when compared to both specimens 1 and 2. Graphite flake length clearly influenced the scale of the fracture events occurring ahead of and underneath the cutting tool.

The slow orthogonal machining of Type D graphite specimens 4 and 5 showed similar deformation mechanisms ahead of and below the tool. During machining of specimen 4, it was observed that deformation and fracture events also occurred throughout the region ahead of the tool, resulting in discontinuous chips. Fracture occurred preferentially pref·er·en·tial  
adj.
1. Of, relating to, or giving advantage or preference: preferential treatment.

2.
 in the interdendritic regions where the graphite flakes were aligned. Chips came off as big chunks ahead of the tool. These flake-rich interdendritic regions were easy fracture paths that caused large chunks of material to readily separate from the base material. Deformation on the underside of the tool was present but was more limited for specimens with Type D graphite. This contributed to the improved surface finish for Type D (compared to Type A) graphite specimens.

When machining specimen 5, the video pictures showed that the matrix deformation and fracture was more extensive ahead of and beneath the tool as compared to specimen 4. The type and size of flake graphite in both specimens was the same, but specimen 4 had a pearlitic matrix while that of specimen 5 was predominantly ferritic. Since the ferritic matrix was softer and more ductile ductile /duc·tile/ (duk´til) susceptible of being drawn out without breaking.

duc·tile
adj.
Easily molded or shaped.



ductile

susceptible of being drawn out without breaking.
, the matrix deformation was more extensive for specimen 5 than for 4.

Quantitative Analysis

The general observations from the video pictures described in the previous section were investigated further by quantitative analysis. Figures 2a-d describe a model of chip formation processes in gray irons. Figure 2a shows the start of the process where the tool compressed the work material ahead of itself, thus creating an irregular fracture front that traves ahead. Microcracking is observed throughout the deformed de·formed
adj.
Distorted in form.
 region ahead of the tool. As the tool moves forward, chip fragments completely fracture and separate (Fig. 2b). Microcracks connect with each other, creating a shattered shat·ter  
v. shat·tered, shat·ter·ing, shat·ters

v.tr.
1. To cause to break or burst suddenly into pieces, as with a violent blow.

2.
a.
 region where separation occurs at all graphite matrix interfaces. At the same time, a similarly damaged region with compacted fragments of the material is created below the tool.

Irregular fracture occurred at some intervals, creating craters beneath the cut surface (Fig. 2c). In such cases, the tool travels freely without cutting any material until the next chip formation and fragmentation (1) Storing data in non-contiguous areas on disk. As files are updated, new data are stored in available free space, which may not be contiguous. Fragmented files cause extra head movement, slowing disk accesses. A defragger program is used to rewrite and reorder all the files.  cycle begins. A subsurface sub·sur·face  
adj.
Of, relating to, or situated in an area beneath a surface, especially the surface of the earth or of a body of water.

Adj. 1.
 damaged region, referred to in this study as the fracture depth, is clearly noticeable. This region contains shattered and compacted fragments of the cut material that is grazed graze 1  
v. grazed, graz·ing, graz·es

v.intr.
1. To feed on growing grasses and herbage.

2. Informal
a. To eat a variety of appetizers as a full meal.
 over by the tool tip as it passes. The uneven surface that is caused by irregular fracture contributes to machined surface roughness.

Figure 3 shows the various measurements taken around the tool and presented in Table 4. The fracture distances ahead of and beneath the tool are described in the diagram and table as fracture front (y) and fracture depth (d), respectively.

The chip thickness showed significant differences among the specimens. The chips obtained from Type A graphite specimens were generally thicker than those from Type D graphite. The Type A graphite specimens were deformed and fractured much more readily ahead of and below the tool during machining. Consequently, the formed chip spread out parallel to the tool face, resulting in larger chip thickness.

The behavior of Type D graphite was similar but the spread of the chips occurred to a lesser extent. This chip variation observed in gray irons violates an important assumption used in the Merchant theory of orthogonal cutting. This explains why commonly used analysis for characterizing the machining behavior of other materials cannot be blindly used to characterize the machining behavior of cast gray iron.

QSD Machining Results

Examination of the SEM photomicrographs of gray iron specimens after QSD machining revealed a complex zone ahead of and underneath the cutting tool where the material was affected. This zone is named the machining-affected zone (MAZ MAZ Magnetaufzeichnung (German)
MAZ Mayaguez, PR, USA - El Maui (Airport Code)
Maz Mazanderani (linguistics)
MAZ Minskiy Avtomobilnyi Zavod (Minsk, Bielorussia) 
). The three separate regions observed in the MAZ are shown in Fig. 4--the decohesion zone, the fracture zone A fracture zone is a linear oceanic feature--often hundreds, even thousands of kilometers long--resulting from the action of offset mid-ocean ridge axis segments. They are a consequence of plate tectonics.  and the shattered zone.

In the decohesion zone (at low strain far ahead of the tool), decohesion occurs between the matrix structure and many of the graphite flakes. This microcracking eventually creates paths of easy fracture.

The fracture zone is characterized by larger cracks that are formed by the link-up of selected microcracks that also join up with cracks propagating from the tool interface. The cracks follow the graphite flake paths of least resistance and are randomly oriented and distributed.

The shattered zone has two parts--the region ahead of the tool and the region below the tool. The region ahead of the tool consists of material that is shattered into small matrix fragments from microfracturing at almost all graphite-matrix interfaces. The discontinuous chips that form are fragments, loosely held together with fractured graphite/matrix interfaces. The material below the tool also is shattered, but compressive com·pres·sive  
adj.
Serving to or able to compress.



com·pressive·ly adv.
 forces exerted by the relative motion of the tool and the work cause compaction of the chip fragments, resulting in a matted structure.

Fracture Events in the MAZ Model

When machining Type A and D graphite irons, the compressive forces cause decohesion between graphite flakes and the matrix to occur in the region ahead of and below the cutting tool. On further straining, plastic deformation plastic deformation,
n any irreversible deformation of tissues.
 and fracture of the matrix occur, resulting in a network of microcracks. As machining progresses, these microcracks coalesce co·a·lesce  
intr.v. co·a·lesced, co·a·lesc·ing, co·a·lesc·es
1. To grow together; fuse.

2. To come together so as to form one whole; unite:
 and form larger microcracks.

The link-up of selected small and large microcracks form the primary crack front in the fracture zone. Finally, when several crack fronts link up ahead of the tool, the material shatters into many fragments that form the discontinuous chip.

The graphite flakes for Type A specimen 1 (Fig. 5a) were randomly oriented and distributed. The fracture occurred along the flakes and the damage ahead of and beneath the cutting tool is extensive. The fracture mode for the other Type A graphite irons, specimens 2 and 3, were similar to that for specimen 1. Figure 5b shows a photomicrograph photomicrograph /pho·to·mi·cro·graph/ (fo?to-mi´kro-graf) a photograph of an object as seen through an ordinary light microscope.

pho·to·mi·cro·graph
n.
A photograph made through a microscope.
 of the shattered zone for specimen 2. The three regions of the MAZ may be seen. In comparison with specimen 1, the damage ahead of and on the underside of the tool for 2 was much more extensive.

The photomicrograph showing the shattered zone for specimen 3 is presented in Fig. 5c. The fracture also occurred along the graphite flakes ahead of and on the underside of the tool, and the MAZs may be seen. Since the graphite flakes were much longer in specimen 3 than in either 1 or 2, deformation and fracture in this material occurred in all directions and were much more extensive.

A similar MAZ view for Type D graphite specimen 4 is shown in Fig. 5d. Deformation and fracture preferentially occurred in the intercellularregions containing the graphite flakes. Again, the damage ahead of and beneath the cutting tool is defined by the three zones.

The photomicrograph for specimen 5 Type D graphite in a ferrite matrix is shown in Fig. 5e. Similar fracture events occurred along the flakes with the three regions of the MAZ visible. The deformation ahead of and on the underside of the tool for Type D graphite specimens was more extensive for the ferritic specimen, than for the pearlitic specimen. The flake size of these materials was similar, therefore, the difference in fracture characteristics can be attributed to the difference in matrix structure.

MAZ Quantitative Analysis

To convert the proposed MAZ characteristics into a quantifiable and reproducible model, a method has been developed to determine zone distances from the cutting tool. The distances are obtained by taking measurements on four different planes from the MAZ photomicrographs.

The data shows that for Type A graphite, specimen 3 (with long Type A flakes and coarse pearlite matrix) had the largest deformation distances. On the other hand, specimen 1 (with short Type A flakes and fine pearlite matrix) had the shortest distances. The deformation distances for specimen 2 were in between but closer to 3, due to their similar microstructure of long flakes and coarse matrix.

Specimen 3 exhibited higher MAZ distances in the various planes just as it did in the slow-speed experiments. The longer graphite flakes and lower hardness of specimen 3 caused more deformation and easy fracture to occur than in both specimens 1 and 2. Similarly, the MAZ distances for specimen 2 were closer to those of 3 because of longer graphite flakes and lower hardness. In addition, both 2 and 3 had coarser pearlite matrix, while specimen 1 had a fine pearlite matrix structure with higher hardness.

In the case of Type D graphite irons, specimen 4 with a pearlite matrix had much shorter fracture distances than did specimen 5 with a ferrite matrix for all the planes. Moreover, the fracture distances for specimen 5 compared closely with those of the Type A graphite irons. The main influence on the fracture distances is the matrix structure. This result indicated that the higher the amount of ferrite in the matrix, the higher the ductility and the easier it is to machine the material.

Surface Characteristics

If free graphite exists at the tool work interface during the machining of gray irons, it can be expected to influence the machining characteristics of these materials. To determine conclusively con·clu·sive  
adj.
Serving to put an end to doubt, question, or uncertainty; decisive. See Synonyms at decisive.



con·clusive·ly adv.
 if free graphite was present at the cutting interface during machining, photomicrographs of the chip root for QSD specimens were evaluated. Figures 6a-c are photomicrographs that show the root of the cut chip for Type A specimens 1, 2 and 3. They all reveal the presence of free graphite at the root of the cut chip.

The photomicrographs also show evidence of graphite smearing Smearing is a term used in rock climbing.

It is the practice of using the sole of a shoe against a flat rock face. Smearing can be one of the most insecure and technical techniques used in climbing, requiring a combination of leg/ankle tension, foot placement, and good
. Figures 6d and 6e are photomicrographs of QSD specimens for Type D specimens 4 and 5. The photomicrographs show that free surface graphite is present at the root and that graphite smearing occurs during machining.

These observations confirm that free graphite exists at the tool-chip interface during the machining of all gray irons. As a result, it can be concluded that the free graphite serves an important lubrication role between the tool and the work material during machining.

Conclusions

The chip formation process of gray irons is fundamentally influenced by the graphite morphology and the interaction of the graphite with the matrix structure. The fracture of these materials during machining occurs along the graphite flakes. The extent of deformation and fracture in the MAZ ahead of and beneath the cutting tool depends on the size and shape of the graphite. The longer the graphite flakes, the larger the MAZ.

The machining characteristics of gray irons also are influenced by the type of matrix structure. The results in this study show that a coarse pearlitic matrix structure is more favorable fa·vor·a·ble  
adj.
1. Advantageous; helpful: favorable winds.

2. Encouraging; propitious: a favorable diagnosis.

3.
 to large MAZs than is a fine pearlite matrix. Similarly, larger MAZs are obtained with a ferrite matrix structure than with a pearlite matrix.

The results from the study show evidence of the existence of free graphite at the tool-chip interface during machining of gray cast irons. In then can be argued that fine, free graphite is present at the cutting boundary of the tool and the work material where it affects the local frictional conditions and, therefore, tool life. The fine graphite at the boundary can form a thin solid film that separates the tool from the work. As a result, chip shear strain shear strain or shearing strain

See under strain.
 is lowered and friction at the tool-chip interface is reduced. Consequently, the tool-chip interface temperatures are lowered and machinability is enhanced.

In conclusion, the detailed study of the MAZ in gray irons has revealed the fundamental mechanics of chip formation in gray irons. Following are specific conclusions drawn from this study:

1. Fracture of Type A and D flake graphite irons during machining occurs along the graphite flakes, forming discontinuous chips. The longer the graphite flakes, the longer the fracture distances ahead of and below the tool.

2. Three regions that describe the MAZ for flake graphite irons are identified--the decohesion zone, the fracture zone and the shattered zone.

3. The sizes of the MAZs were influenced by both the matrix structure and the graphite morphology of the gray iron.

4.Free-surface graphite is present at the tool-chip interface of flake graphite irons, and it is concluded that graphite plays a major role in influencing frictional and chip formation conditions during the machining.

This article was adapted from a paper (9980) presented at the 1999 AFS Casting Congress and is available from AFS Publications at 800/537-4237.
                   Cutting Conditions for Slow-Speed and
                               QSD Machining
               Slow-speed
Parameter      machining        QSD machining
Cutting speed: 2 in./min        120 feed/min
Depth of cut:  0.015 in.        0.015 in.
Width of cut:  0.125 in.        0.125 in.
Tool material: High-speed steel High-speed steel
Rake angle:    0[degrees]       0[degrees]
Magnification: X160             --
                  Microstructure Characteristics for the
                         Five Gray Iron Specimens
Specimen Class             Description
   1     ASTM A48 Class 40 Type A graphite size 5-6
                           in. pearlite
   2     ASTM A48 Class 30 Type A graphite size 4-5
                           in. coarse pearlite
   3     --                Type A graphite size 2-3
                           in. coarse pearlite
   4     --                Type D graphite in mainly
                           pearlitic matrix
   5     --                Type D graphite in
                           ferrite with some
                           pearlite
                          Chemical Composition of
                            the Five Gray Iron
                                 Specimens
Element      1     2     3     4     5
Carbon     3.390 3.360 2.680 3.260 3.070
Silicon    2.570 2.190 1.950 2.720 2.620
Manganese  0.804 0.437 0.705 0.282 0.157
Sulfur     0.044 0.051 0.044 0.010 0.012
Nickel     0.031 0.020 0.041 0.015 0.039
Chromium   0.039 0.031 0.057 0.023 0.032
Copper     0.073 0.040 0.084 0.636 0.040
Phosphorus 0.023 0.020 0.017 0.013 0.020
Molybdenum 0.006 0.006 0.010 0.006 0.006
Magnesium   NR    NR    NR    NR    NR
Tin (Sn)    NR    NR    NR    NR    NR
NR: Not Reported
                   Fracture Measurements Taken from the
                  Video for the Five Gray Iron Specimens
             Fracture                Fracture         Contact      Chip
             Front, y                Depth, d         Length     Thickness
Spec. (mean [pm]3[sigma] in.) (mean [pm]3[sigma] in.) x (in.) [t.sub.c] (in.)
  1      0.033 [pm]0.0003        0.013 [pm]0.0004      0.011       0.024
  2      0.034 [pm]0.0005        0.015 [pm]0.0009      0.014       0.023
  3      0.051 [pm]0.0010        0.021 [pm]0.0006      0.020       0.030
  4      0.030 [pm]0.0005        0.009 [pm]0.0003      0.014       0.020
  5      0.031 [pm]0.0003        0.013 [pm]0.0005      0.009       0.021
      Shear
      Angle
Spec. (deg.)
  1     25
  2     24
  3     22
  4     28
  5     26
COPYRIGHT 2000 American Foundry Society, Inc.
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2000, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Author:Cohen, Paul H.
Publication:Modern Casting
Date:May 1, 2000
Words:3644
Previous Article:CDC Develops Node for Sculpture.
Next Article:Roy Evers: 'Using Castings to Make Castings' at St. Louis Precision.



Related Articles
A systematic approach to cast iron defect analysis.
Division emphasizes importance of cast iron properties.
Gray iron inoculation revisited.
Computer guided inoculation simplifies CGI production.
Another approach to iron casting: the permanent mold process.
Controlling the production of compacted graphite iron.
Howard F. Taylor Award.
Sessions Target Improved Processes.
Stabilizing Pearlite In Gray Cast Iron.
Casting Answers & Advice.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters