Printer Friendly

Impact of screening on behavior during storage and cost of ground small-diameter pine trees: a case study.

Abstract

Whole comminuted comminuted /com·mi·nut·ed/ (kom´in-ldbomact?id) broken or crushed into small pieces, as a comminuted fracture.

com·mi·nut·ed
adj.
Broken into fragments. Used of a fractured bone.
 trees are known to self-heat and undergo quality changes during storage. Trommel trom·mel  
n.
A revolving cylindrical sieve used for screening or sizing rock and ore.



[German, from Middle High German trummel, diminutive of trumme, drum,
 screening after grinding is a process that removes fines from the screened material and removes a large proportion of high-ash, high-nutrient material. In this study, the trade-off between an increase in preprocessing cost from trommel screening and an increase in quality of the screened material was examined. Fresh lodgepole pine lodgepole pine, common name for the pine species Pinus contorta, found in the Rocky Mts. and the northwestern coast of the United States.  (Pinus contorta) was comminuted using a drum grinder with a 10-cm screen, and the resulting material was distributed into separate fines and overs piles. A third pile of unscreened material, the unsorted pile, was also examined. The three piles exhibited different characteristics during a 6-week storage period. The overs pile was much slower to heat. The overs pile reached a maximum temperature of 56.8[degrees]C, which was lower than the maximum reached by the other two piles (65.9[degrees]C and 63.4[degrees]C for the unsorted and fines, respectively). The overs also cooled faster and dried to a more uniform moisture content and had a lower ash content than the other two piles. Both piles of sorted material exhibited improved airflow and more drying than the unsorted material. Looking at supply system costs from preprocessing through in-feed into thermochemical conversion, this study found that trommel screening reduced system costs by over $3.50 per dry matter ton and stabilized material during storage.

**********

The biofuels industry is rapidly expanding to meet an increasing demand for infrastructure-compatible liquid transportation fuels. To meet this demand, the industry will require a diversity of feedstock sources, including agricultural and forest products or by-products. Incorporating the most economical feedstock that is compatible with the conversion technology is key to reducing biofuels production cost. Although a variety of factors influence harvest and collection cost of woody biomass (e.g., stand density, haul distance to the landing, season, tire/track characteristics, clear-cut vs. thinning, and terrain conditions; Beardsell 1983, Leinonen 2004), larger trees (e.g., 25 to 40 cm diameter at breast height Diameter at breast height, or DBH, is a standard method of expressing the diameter of the trunk of a tree.

The trunk is measured at the height of an adult's breast; this is defined differently in different situations, with foresters measuring the diameter at 1.
 [DBH DBH - Denis Howe ]) are generally more economical than smaller trees (e.g., 5 to 15 cm DBH) and slash. As industry demand exceeds the supply of economically available larger trees, the large quantity of underused feedstocks, such as smaller-diameter (i.e., <20 cm) trees and residues, will become important feedstocks. However, the drive to minimize supply chain costs remains. Sources of these additional woody feedstocks may include fire suppression thinnings, precommercial thinnings, or slash (Perlack et al. 2005). This may also shift industry trends away from storing only debarked woodchips to storing whole-tree chips or different mixtures of cleaned and wholetree chips.

Integration of various mixtures of trees as feedstocks requires an improved understanding of the behavior of these materials during storage, including such considerations as heating, dry matter loss, and ash content. While there has been extensive work done on the behavior of woody materials during storage (e.g., Bergman 1974, Weiner et al. 1974, Springer 1979, Fuller 1985, Jirjis 1995), most focus on cleaned, paper-quality chips, with a limited number of studies looking at whole-tree chips or hog fuel. Physical and chemical properties of biological materials have a major impact on their behavior during storage, such as how the temperature of the material changes. Therefore, the impact of bark, leaves/needles, and dirt present in whole-tree chips and hog fuel that are not found in large amounts in paper-quality chips requires further study. Examples of these physical and chemical properties include moisture, ash content, particle size distribution The particle size distribution[1] ("PSD") of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amounts of particles present, sorted according to size. , and nutrient content.

Cellulosic biomass, such as wood chips, with moisture contents between 25 and 50 percent (wet basis [w.b.]) is more conducive to microbial microbial

pertaining to or emanating from a microbe.


microbial digestion
the breakdown of organic material, especially feedstuffs, by microbial organisms.
 growth that results in heat production and dry matter loss. Self-heating can A self-heating can is an extension of the common food can. It involves the use of dual chambered cans, where an inner chamber holds the food or drink and the outer chamber houses chemicals that undergo an exothermic reaction when combined.  go so far as to cause autoignition and fire (Pottie and Guimier 1985, Hall 2009). The small particle size Particle size, also called grain size, refers to the diameter of individual grains of sediment, or the lithified particles in clastic rocks. The term may also be applied to other granular materials.  created by chipping and grinding leads to an enormous increase in the exposed surface area available for microbial growth, results in reduced airflow and heat diffusion through the pile, and makes the material more susceptible to self-heating. Below a moisture content of 20 percent, microbial activity and self-heating are limited (Springer 1979, Pottie and Guimier 1985, Hall 2009). Also, storage of material with increased particle size provides improved airflow through the pile and experiences less degradation (dry matter loss) during storage (Pottie and Guimier 1985, Jirjis 1995, Nurmi 1999, Wihersaari 2005, Nordic Innovation Centre 2008). Understanding the interaction between moisture, self-heating, and particle size allows researchers to design techniques that stabilize biomass during storage.

A possible strategy for stabilizing ground wood is the removal of leaves/needles, bark, and other fine material by screening after grinding. It is believed that piles of larger particles (i.e., over 5 cm) from screening may have sufficiently increased air movement to reduce heating while allowing moisture to move through and out of the pile as the material dries. Also, removal of fines will reduce ash content in the overs material, and the residual fines may have alternative uses, such as for cofiring with coal or other fuels or nutrient replacement to forests (Heninger et al. 1997, Schoenholtz et al. 2000). The potential advantages of screening are weighed against the cost added by the process.

This study compares self-heating and changes in feedstock moisture, density, heating value The heating value or calorific value of a substance, usually a fuel or food, is the amount of heat released during the combustion of a specified amount of it. The calorific value is a characteristic for each substance. , and ash of three different piles of ground small-diameter pine trees and the costs associated with each of the piles. Recognizing that long-term storage (i.e., over 3 mo) of woody biomass can be avoided because of an almost year-round harvest season in many regions, mixtures stored uncovered for 6 weeks starting in late September 2010 near Ririe, Idaho Ririe is a city in Jefferson and Bonneville Counties (mostly Jefferson) in the eastern part of the U.S. state of Idaho. The population was 545 at the 2000 census. History
The city of Ririe was named for its first homesteader, David Ririe.
, were compared. Whole trees were comminuted with a hammer mill and separated to construct three piles of material: one of woody biomass that passed through a 10-cm trommel screen (fines), another of larger material that remained on the screen (overs), and a third of woody biomass that had not been screened (unsorted).

Materials and Methods

Pile construction and deconstruction

Small-diameter lodgepole pine trees (Pinus contorta) from natural growth forest in Island Park, Idaho Island Park is a city in Fremont County, Idaho, United States. The city's population was 215 at the 2000 census. The city was incorporated by owners of the many lodges and resorts along U.S. , were clear-cut harvested at an average DBH of 10 cm. They were skidded to the landing with a wheeled skidder skid·der  
n.
1.
a. One that skids: a sports car that was a real skidder.

b. One that makes use of a skid.

2.
 that carried the small trees with minimal contact with the ground, reducing dirt entrapment entrapment, in law, the instigation of a crime in the attempt to obtain cause for a criminal prosecution. Situations in which a government operative merely provides the occasion for the commission of a criminal act (e.g.  in the trees. The trees were hauled whole to Rifle, Idaho, where truck weights were taken both loaded and empty within 8 hours of harvest. The trees were comminuted the following day using a mobile grinder with hot saw teeth on a hot saw rotor with a 10-cm screen. The comminuted material was discharged directly into a trommel screen with a 1-cm screen, after which initial sampling was performed for each material mixture. The material that passed through the screen is referred to as the fines, the material too big to pass through the screen is referred to as overs, and the material taken directly from the grinder (and not passed through the screen) is termed the unsorted. Each mixture of material (fines, overs, and unsorted) was conveyed directly into trailers and again weighed at a grain elevator grain elevator

Storage building for grain, usually a tall frame, metal, or concrete structure with a compartmented interior; also, the device for loading grain into a building.
.

The material mixtures were stored on-site in piles. As the piles were built on September 15, 2010, temperature and humidity sensors were placed in each pile and set to log readings every hour. Three were placed in the center of each pile at 1, 2, and 3 m above the ground surface. After settling for 2 days, two additional sensors where inserted in each pile 3 m up and 45 cm deep on the north and south flanks. One additional sensor was placed in a prominent moisture vent once air circulation within the piles was clearly established (about 2 wk). The pile heights at that time (initial pile heights) were 3.7, 3.2, and 3.7 m for the overs, fines, and unsorted piles, respectively. The starting angles of repose were likewise 45[degrees], 38[degrees], and 42[degrees], respectively. Photographs of the piles were taken at various stages of deconstruction. Photographs were overlaid with a grid to estimate surface areas of wet and dry zones, and surface areas of the piles at various stages of deconstruction were combined to approximate pile volumes. Photographs were also used to estimate angle of repose (Physics) the inclination of a plane at which a body placed on the plane would remain at rest, or if in motion would roll or slide down with uniform velocity; the angle at which the various kinds of earth will stand when abandoned to themselves.

See also: Repose
.

A quantitative approximation of resistance to air movement or permeability of each of the piles was obtained by applying air pressure to a perforated sonde inserted into the pile (Ernstson and Rasmuson 1992). The sonde consisted of a 100-cm-long, 5-cm-diameter pipe with a sharp pointed conical tip. Perforations extended for 10 cm at the pointed end and accounted for 40 percent of the surface in that length.

After 6 weeks of storage (on November 3, 2010), the sensors were retrieved, and the piles were deconstructed by carefully removing material from one side of the pile until a vertical face was formed in the pile center. Samples were obtained using a shovel from various pile locations to measure moisture and bulk density. They were then placed in plastic bags, sealed, and stored in coolers prior to analysis. Pile materials were again loaded onto trucks and weighed to obtain a final mass. Analyses performed are described below.

Analyses and weather conditions

Laboratory analyses.--The moisture content was measured according to according to
prep.
1. As stated or indicated by; on the authority of: according to historians.

2. In keeping with: according to instructions.

3.
 the National Renewable Energy Renewable energy utilizes natural resources such as sunlight, wind, tides and geothermal heat, which are naturally replenished. Renewable energy technologies range from solar power, wind power, and hydroelectricity to biomass and biofuels for transportation.  Laboratory analytical procedure "Determination of Total Solids in Biomass" (Sluiter and Sluiter 2005), which is based on ASTM ASTM
abbr.
American Society for Testing and Materials
 E1756-01 (ASTM International ASTM International (ASTM) is an international standards developing organization that develops and publishes voluntary technical standards for a wide range of materials, products, systems, and services.  2001). Briefly, samples were dried in an oven at 105[degrees]C to a constant weight. The reported values are an average of two measurements. Loose and tapped bulk density was measured for wood chip samples by Hazen Research, Inc. (Golden, Colorado) according to ASTM E1109-86 (ASTM International 2009a). Calorific value calorific value
n.
The calories or thermal units contained in one unit of a substance and released when the substance is burned.
 was measured for all woody samples using a Leco AC600 bomb calorimeter bomb calorimeter

see calorimeter.
 according to ASTM D5865-07 (ASTM International 2007b). Thermogravimetric analysis Thermogravimetric Analysis or TGA is a type of testing that is performed on samples to determine changes in weight in relation to change in temperature. Such analysis relies on a high degree of precision in three measurements: weight, temperature, and temperature change.  (TGA See TARGA.

TGA - Targa Graphics Adaptor
) was performed at Idaho National Laboratory (INL INL Idaho National Laboratory
INL Inner Nuclear Layer
INL Instituut voor Nederlandse Lexicologie
INL Integral Non-Linearity
INL International Narcotics and Law Enforcement Affairs Bureau (US Department of State) 
) using a Leco TGA 701. Moisture, volatile, and ash content were measured according to ASTM D5142-09 (ASTM International 2009b), and fixed carbon was determined by difference. Crucibles containing ground sample were placed in the TGA and heated to 107[degrees]C under an [N.sub.2] atmosphere until a constant weight was reached for moisture measurement. Prior to measurement of volatiles, crucibles were capped; samples were then heated to 950[degrees]C under [N.sub.2], and the temperature was held constant for 25 minutes. For ash determination, caps were removed from crucibles, and samples were cooled to 600[degrees]C and then heated to 750[degrees]C until a constant weight was reached. Fixed carbon was determined by weight difference between volatiles and ash. Particle size distribution was determined by ASTM standard method D4749-87 (ASTM International 2007a). Bulk density was measured for both loose and compacted material using the standard ASTM E1109-86.

Weather conditions.--Weather data were obtained from the Rexburg weather station, located approximately 15 km northwest of the study site. The average precipitation in Rexburg from 1977 to 2005 for September, October, and November was 2.1, 2.7, and 2.8 cm, respectively (Western Regional Climate Center 2010), indicating that this is generally a dry climate. There was less than 2.5 cm of total precipitation throughout the study, with no single occurrence being more than 0.6 cm. All precipitation fell between October 4 and November 1. Humidity averaged less than 58 percent.

Results and Discussion

Figures 1 through 3 show final moisture readings along with graphical representations of the observed regions of differing moisture concentrations (labeled A, B, and C). Samples from the interior of each pile were analyzed and reported in Table 1.

The piles had settled and had a lower final height of approximately 3 m. The final angles of repose were 41[degrees], 37[degrees], and 37[degrees] for the overs, fines, and unsorted, respectively. This decrease in angle was a product of the material settling. Little or no material slid to the base of the pile, as the pile diameters remained unchanged throughout the study. These angles are consistent with those reported in literature for similar materials (Danielsson 1990). The volumetric flow rate In fluid dynamics and hydrometry, the volumetric flow rate, also volume flow rate and rate of fluid flow, is the volume of fluid which passes through a given surface per unit time (for example cubic meters per second [m3 s-1  of air, when measured at an applied pressure of 50 Pa, was highest in the overs pile (425 liters/min), followed by the unsorted pile (312 liters/min), and was lowest in the fines pile (297 liters/min).

[FIGURE 1 OMITTED]

Bulk density

Bulk density was measured for both loose and compacted material. Bulk densities in all zones in both the fines and overs piles decreased during storage (Table 1), for example, from an initial density of 254 kg/[m.sup.3] to a final density of 230 kg/[m.sup.3] in Region A of the fines pile, likely due to a decrease in moisture content. Bulk density in the unsorted material increased in the upper regions of the pile (the wet Region A in Fig. 1) and remained unchanged or decreased in the lower regions of the pile.

Moisture

Initial moisture content of the fines ranged from 45 to 54 percent moisture (w.b.) and averaged 52 percent. Overs ranged from 47 to 53 percent, with an average of 51 percent, and finally the unsorted material had moisture content between 48 and 53 percent, with an average of 52 percent. Final moisture content varied on the basis of location within the pile (Figs. 1 and 2). For example, moisture measurements in Region C of the fines pile were below 30 percent, while moisture measurements in Region A of the unsorted pole were over 60 percent. In general, moisture migrated within all three piles with visibly distinct zones occurring in the fines and unsorted piles. Only the moisture measurements of the fines and overs piles suggested pile moisture loss, whereas the unsorted pile showed moisture migration.

[FIGURE 2 OMITTED]

By volume, around 80 percent of each pile was located from the ground up to 1.5 m. Moisture averages from this zone suggest drying in all piles, with the overs pile being the driest. Moisture measurements indicate that both the overs and the fines piles lost more moisture than the unsorted pile. Because temperature profiles were similar in the unsorted and fines piles, other factors likely contributed to the increase in drying in the fines. Possible mechanisms for increased drying include shorter distance for water to diffuse out of the wood particles, enhanced capillary movement of water in the fines due to smaller average particle size, and decreased thermal conductivity of the fines pile causing less condensation to occur while water vapor was still inside the pile. Even though the piles settled during storage, changes in bulk density were likely driven primarily by movement of water in the piles.

[FIGURE 3 OMITTED]

Particle size

The unsorted pile had the most even distribution of particle sizes at the time of pile constriction constriction /con·stric·tion/ (kon-strik´shun)
1. a narrowing or compression of a part; a stricture.constric´tive

2. a diminution in range of thinking or feeling, associated with diminished spontaneity.
, ranging from 10 percent in the 13-mm fraction to 24 percent in the 2-mm fraction (Fig. 4). As expected, the overs pile contained the highest proportion of larger particle sizes. The overs and unsorted pile had nearly the same proportion of 20-mm pieces; however, the overs pile had a much lower portion of smaller particle sizes than the unsorted pile. The fines did not contain any particles above 6 mm, with the majority of the fines being 2 mm. Although particle size distribution was determined from samples taken at various pile heights during pile deconstruction, distribution remained consistent throughout the piles.

The trees comminuted for this study were still green and had high moisture content (approximately 51%). Grinders tend to be less effective at comminuting wetter material (e.g., Pottie and Guimier 1985), but in this study, a large proportion of fine particles Fine particles are an air pollutant mainly produced by cars running on diesel. Other sources are the combustion of fossil fuels in power plants and various industrial processes.  were produced. Visual observation suggested that much of the bark ended up as fines, most likely because of its friable friable /fri·a·ble/ (fri´ah-b'l) easily pulverized or crumbled.

fri·a·ble
adj.
1. Readily crumbled; brittle.

2. Relating to a dry, brittle growth of bacteria.
 nature, and a large proportion of the fines were also needles and small particulates. The overs material had a large amount of wood chunks, as expected, but also a surprising amount of needles. Because the trees were comminuted while fresh, the needles were still firmly attached to the branches, causing many branch tips to remain on the screen, and these needle-covered branch tips ended up in the overs pile.

[FIGURE 4 OMITTED]

HHV HHV Human Herpes Virus
HHV Higher Heating Value
HHV Hilton Hawaiian Village
HHV High Heating Value
HHV Help Hospitalized Veterans (Winchester, CA)
HHV Heavy HMMWV
HHV Hydraulic Hybrid Vehicle
 and ash

The energy content, expressed as higher heating value (HHV), was approximately the same for each fraction at the start of the study, which is a reflection of the similarities in carbon and moisture content. Loss of moisture in the overs and fines piles increased the HHV in these materials.

The initial ash content was lowest in the overs pile, which is as expected, as much of the ash is in the bark and needles. The trommel screen reduced the initial ash content in the overs to 0.52 percent (w.b.), raising the ash content in the fines to 0.88 percent (Table 1), while the initial ash content of the unsorted material was 0.83 percent (w.b.).

The trommel screen was effective at reducing the ash content of the overs. A number of factors contributed to the low (i.e., < 1%) level of ash in the parent material, including minimizing ground contact of the trees during skidding (high-ash dirt can become embedded in the bark, raising the ash content; Harkin and Rowe 1971, Phanphanich and Mani Mani (mä`nē): see Manichaeism.
Mani
 or Manes or Manichaeus

(born April 14, 216, southern Babylonia—died 274?, Gundeshapur) Persian founder of Manichaeism.
 2010). Woody materials with elevated ash due to entrained soil may show an even greater decrease in ash due to the effectiveness of trommel screening at removing small particles (Hubbard et al. 2007).

Elevated ash measurements in the upper zones of the fines and unsorted fractions may be caused by microbial degradation in these high-moisture zones that release carbon (in the form of C[O.sub.2]) and retain the inorganic materials as a result of dry matter losses. Increases in ash in stored wood as a result of biological degradation and resulting dry matter loss has been reported by other researchers (Thornqvist 1985, Jirjis 2005).

Temperature

Temperature sensors indicated that all three piles underwent self-heating during storage. Figure 5 is a plot of temperature fluctuation within the three storage piles during storage at the upper, middle, and lower portions of each pile.

[FIGURE 5 OMITTED]

There was a difference in the temperature profiles of the three piles. The fines and unsorted piles heated up faster and to higher temperatures than the overs pile regardless of the location of the sensor. The fines and unsorted reached maximum temperatures at approximately the same time; however, the unsorted heated to a higher temperature than the fines. The fines pile remained relatively constant at approximately 64[degrees]C for about 35 days, at which point the temperature decreased slowly to about 60[degrees]C. The overs pile took longer to heat up and heated to a much lower temperature than both the fines and the unsorted piles, which reached their maximum temperatures within a week of construction; the unsorted pile took about 12 days before a steady increase in heating was observed. The maximum temperature reached in the overs pile was 56.8[degrees]C, as opposed to the 63.4[degrees]C and 65.9[degrees]C reached in the fines and unsorted piles, respectively. The overs pile was more sensitive to changes in ambient temperature Outside temperature at any given altitude, preferably expressed in degrees centigrade.  (Fig. 6).

Sensors placed in the surface vents for each of the piles revealed different temperatures in each of the three piles at the vents. High temperatures in the vents were 44[degrees]C, 48[degrees]C, and 46[degrees]C, and low temperatures were 0[degrees]C, 6[degrees]C, and 6[degrees]C in the overs, fines, and unsorted piles, respectively.

Although there was some fluctuation for all the piles, the top of the overs pile generally experienced less heating than the bottom and center of the pile (Fig. 5). This is again consistent with the overs being more vulnerable to changes in ambient conditions. The bottom of the overs piles was frequently warmer than the center. However, for the unsorted pile, the top heated slightly more than the center, which in turn heated more than the bottom of the pile. For the fines pile, the top of the pile again heated up faster than the center of the pile, although the two areas were within 5[degrees]C after about 2 weeks. Both the top and the center of the fines pile stayed warmer than the bottom of the pile. Thermal images were taken of all three piles at the end of the study, confirming the results shown in Figure 5.

The north side of the overs pile had higher temperature readings than the south side. Prevailing southerly winds likely caused the internal plume of water vapors to drift toward the north as it rose, resulting in vents and elevated temperature readings on the north side. Although the same was noted for the unsorted and the fines, the difference was less dramatic. These declines in temperature may be due to increased porosity, allowing heat to escape the pile, consumption of easily accessible organic compounds by microbes, and/or moisture reduction (Springer 1979, Pottie and Guimier 1985, Hall 2009).

The high temperature of the fines vent may be a sign of increased transportation of moisture out of the pile due to reduced condensation occurring in the upper levels of the pile. The data show the transient nature of the surface vents and the sensitivity of the vents to diurnal diurnal /di·ur·nal/ (di-er´nal) pertaining to or occurring during the daytime, or period of light.

di·ur·nal
adj.
1. Having a 24-hour period or cycle; daily.

2.
 changes in temperature and wind speed. The temperature readings of the 45-cm-deep sensors in the unsorted and fines piles indicated that the region of self-heating may have been very large. This was verified by thermal images.

Both the unsorted and the fines piles experienced a rapid decline in temperature followed by a slow rise in temperature near the end of the study (Fig. 6). The drop and subsequent rise corresponds to ambient temperatures during the study, and the drop was preceded by the largest occurrence of precipitation. It is likely that the combination of low ambient temperatures and evaporative cooling Evaporative cooling is a physical phenomenon in which evaporation of a liquid, typically into surrounding air, cools an object or a liquid in contact with it. Latent heat describes the amount of heat that is needed to evaporate the liquid; this heat comes from the liquid itself and  on the flanks of the piles cause very cool air to be drawn into the piles, resulting in quick cooling.

[FIGURE 6 OMITTED]

Dry matter loss

The dry matter loss, which is a combination of mechanical and biological losses, was estimated from the volume of regions shown in Figures 1 through 3, combined with the starting and end weights of the truck. Estimated losses are 10, 24, and 12 percent for the overs, unsorted, and fines pile, respectively. However, the heterogeneity of moisture distribution in the fines and unsorted piles poses a challenge to estimating dry matter loss in the piles, as small differences in moisture concentrations and/or moisture zone volumes, as well as the assumption of average moisture content for an entire volumetric volumetric /vol·u·met·ric/ (vol?u-met´rik) pertaining to or accompanied by measurement in volumes.

vol·u·met·ric
adj.
Of or relating to measurement by volume.
 region, cause large swings in weight calculations. In addition, piles are conical, and the volume of a cone is greatly affected by height and radius. For example, the difference in whole-pile volume between a 3-m pile that is 4.0 m (13 ft) in diameter and 4.3 m (14 ft) in diameter is around 8 [m.sup.3]. To estimate pile volume, it was assumed that the bases of the piles were a perfect circle; however, this was unlikely the case. Any small deviation from that assumption impacts the calculation of pile volume. The relative uniformity of moisture levels in the overs pile facilitates a more accurate calculation of total dry matter loss, which is the sum of mechanical and biological losses.

Impact of screening on heating and quality

Other researchers examining how compaction and particle size distribution and therefore permeability to airflow affect wood storage have obtained conflicting results (Thornqvist 1985, Ernstson and Rasmuson 1992, Nurmi 1999). A reduced permeability to airflow may have limited self-heating in the fines pile by reducing oxygen levels, thereby limiting microbial metabolism Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.  (Fuller 1985). Limited permeability measurements suggested that the overs pile had the highest permeability, which is as expected, as the fine material that would fill spaces in the wood and inhibit airflow had been sifted out with the trommel screen. This higher permeability would allow air to move more freely through the pile and therefore water vapor to escape. It would also allow the pile to cool down and therefore limit the formation of hot spots hot spots

acute moist dermatitis.
, which was confirmed with temperature measurements (Fig. 6). In the unsorted pile, there was still a large portion of large particles (Fig. 4) to promote airflow; however, a large percentage of fine particles restricted air movement. Limited permeability measurements also suggested that the unsorted pile had lower permeability than the overs pile. This restriction may have contributed to an increase in heating over the other two piles. Finally, airflow in the fines pile was most restricted, as there were no larger voids facilitating airflow.

Although the initial moisture in all piles was very similar (Table 1), elevated temperatures in the unsorted and fine piles caused moisture to migrate within the pile, resulting in heterogeneous distribution. During self-heating, the hot air rises from the pile center toward the surface, drawing air in through the flanks (Hall 2009). Increased temperatures also cause water evaporation that is then transported toward the center and higher in the pile, resulting in drying in the flanks and condensation, increasing moisture in the upper regions (Figs. 1 and 2). Anecdotal evidence anecdotal evidence,
n information obtained from personal accounts, examples, and observations. Usually not considered scientifically valid but may indicate areas for further investigation and research.
 suggests that some moisture is transported completely out of the pile and is visible as vapor on cold mornings. The venting of the hot air through the top of the pile was clearly observed for the fines and unsorted piles and for a short time the overs pile. The overs pile heated less, and the moisture content measured was more homogeneous. Even after cooling, increased porosity would allow water to evaporate and escape the overs pile.

The fines pile is more likely to experience dry matter loss. Previous work has shown that the material composition of fines, with a higher percentage of needles and bark, increases decay (Springer 1979, Pottie and Guimier 1985), as these particles are rich in nutrients that promote the growth of fungi and bacteria (Gislerud and Gronlien 1977, 1978; Springer 1979; Hall 2009). Heated air moving through the pile becomes saturated with water, and heat is lost from the top of the pile because of conduction and convection (Lynch et al. 1997). Cooling humid air causes condensation, explaining the water and high moisture concentrations at the top of the fines and unsorted piles. However, it is suspected that the fines have reduced conduction and convection, allowing more water to stay in the vapor phase and escape the pile, resulting in decreased moisture content.

Cost impact

Although there may be quality improvements related to screening, there is an associated cost. To examine the cost impact of screening woody biomass intended for thermochemical conversion, costs of relevant portions of the supply chain were extracted from a woody supply system model developed by INL. The woody biomass supply system model incorporates a combination of values and relationships obtained from other national laboratories, publications, consultation with academics and staff from the US Department of Agriculture Forest Service, and published and unpublished INL data. There are many inputs into the model, including but not limited to ownership costs (e.g., depreciation, interest, and insurance), operating costs operating costs nplgastos mpl operacionales  (e.g., repair and maintenance, fuel, and labor), dry matter losses, biomass yield, machine capacity and efficiency, machine speed, moisture content, and so on. Costs for the relevant portions of the supply chain are shown in Table 2.

Equipment used to determine costs presented in Table 2 is consistent with that described in the section "Pile construction and deconstruction." The base case shown in Table 2 is a scenario wherein whole trees are ground, piled, and then transported to the biorefinery without storage. The material is handled the same as the unsorted material after transport. Initial grinding occurs at the landing for all cases; however, for the overs and fines scenarios, the cost of a trommel screen is added. As the mass of the screened and unscreened material is approximately equal (Table 1), the trommel screen cost is also assumed to be equal. Moisture content and bulk density during transport are taken from Table 1, and these values are used to determine transport and plant handling costs. Two drying scenarios are considered: drying the material to 10 percent moisture content using (1) waste process heat and (2) a natural gas--fired rotary drum dryer. Finally, a hammer mill is added after the dryer for the base case, unsorted, and overs scenarios to account for the difference in particle size between the different materials. Note that elevated levels of ash are problematic in most biomass conversion facilities (Phillips et al. 2007, Jones et al. 2009) and that differences in ash content of the different materials were not taken into account.

Looking at the costs in Table 2, the fines pile has the lowest cost when using the waste heat dryer or the natural gas dryer (the difference being greater with the waste heat dryer). The average of the fines and overs costs was also lower than the unsorted cost for these scenarios. If hammer milling is not a consideration (i.e., particle size does not matter for conversion process in-feed), then the unsorted pile has the lowest cost when a waste heat dryer is used. The fines had a lower cost when the natural gas dryer was used. For this case, the overs and fines costs are nearly identical for this scenario, and therefore the average of fines and overs is slightly higher than the fines. Passive drying during storage decreased transportation and handling costs for all three piles over the base case. Therefore, the additional investment in the trommel screen operation at the landing has savings that carry throughout the supply chain.

Conclusions

Trommel screening resulted in piles with heating and drying characteristics that are different from the unsorted material. As suggested by observations of the behavior of the overs pile over the 6-week storage period, trommel screening can be used to lower ash content and self-heating while increasing moisture loss in storage piles. It is unexpected that the fines fraction would also have improved drying and self-heating characteristics, indicating that factors other than permeability to airflow play a role in self-heating and drying in these piles. In addition, passive drying at the landing lowers transportation and facility drying costs and improves conversion economics. Understanding the relationships between these factors is crucial to optimizing storage parameters that improve biomass quality and storage characteristics.

Although the relationship between permeability to airflow, pile size, particle size, and moisture content have all been previously studied, the comparison presented herein suggests that using a trommel screen on comminuted woody biomass prior to screening can be beneficial by reducing self-heating, increasing drying, and decreasing ash content (all of which were observed in the overs pile). Improving the understanding of the behavior of new biomass feedstocks during storage and the potential implication of these behaviors in subsequent supply chain operations is an important component of expanding the integration of these feedstocks in a growing biofuels industry.

Acknowledgments

The authors gratefully acknowledge the assistance of Gary Wilcox and his staff at Wilcox Brothers Logging for harvesting, collecting, and preprocessing the biomass used in this study. The authors are also appreciative of the help from several people at INL, including David Combs for graphics work, Leslie Ovard and Bill Smith for technical editing, Jacob Jacobson for cost determination, and Manunya Phanphanich for data interpretation consultation. The authors thank Jeremy Eaton and Ian Bonner for laboratory analysis and the US Department of Energy for providing funding for the project.

Literature Cited

ASTM International. 2001. Standard test method for determination of total solids in biomass. ASTM E1756-01. ASTM International, West Conshohocken, Pennsylvania West Conshohocken is a borough in Montgomery County, Pennsylvania, United States. The population was 1,462 in 1880; 2,482 in 1950; 1,516 in 1980; 1,294 in 1990; and 1,446 at the 2000 census. .

ASTM International. 2007a. Standard test method for performing the sieve analysis A sieve analysis is a practice or procedure used to assess the particle size distribution of a granular material. The size distribution is often of critical importance to the way the material performs in use.  of coal and designating coal size. ASTM D4749-87. ASTM International, West Conshohocken, Pennsylvania.

ASTM International. 2007b. Standard test method for gross calorific value of coal and coke. ASTM D5865-07. ASTM International, West Conshohocken, Pennsylvania.

ASTM International. 2009a. Standard test method for determining the bulk density of solid waste fractions. ASTM E1109-86. ASTM International, West Conshohocken, Pennsylvania.

ASTM International. 2009b. Standard test methods for proximate analysis (Chem.) an analysis which determines the proximate principles of any substance, as contrasted with an ultimate analysis.

See also: Proximate
 of the analysis sample of coal and coke by instrumental procedures. ASTM D5142-09. ASTM International, West Conshohocken, Pennsylvania.

Beardsell, M. 1983. Integrated harvesting systems to incorporate the recovery of logging residues with the harvesting of conventional forest products. Virginia Tech University, Blacksburg. 162 pp.

Bergman, O. 1974. Thermal degradation and spontaneous ignition in outdoor chip storage. Department of Forest Products, Royal College of Forestry Research Notes 91. Institutionen for Virkeslara, Stockholm. Danielsson, B. O. 1990. Chunkwood as wood fuel. Biomass 22:211-228. Ernstson, M. L. and A. Rasmuson. 1992. Field and laboratory measurements of the air permeability of chipped forest fuel materials. Fuel 71:963-970.

Fuller, W. 1985. Chip pile storage--A review of practices to avoid deterioration and economic losses. J. Tech. Assoc. Pulp Paper Ind. 68: 48-52.

Gislerud, O. and H. Gronlien. 1977. Storage of whole-tree chips A storage experiment with chips from thinnings. Norsk Institutt for Skogforskning Rapport 1/77. Norsk Institutt for Skogforskning, Oslo.

Gislerud, O. and H. Gronlien. 1978. Storage of whole-tree chips of gray alder--A storage experiment at Meraker Smelteverk A/S. Norsk Institutt for Skogforskning Rapport 1/78. Norsk Institutt for Skogforskning, Oslo.

Hall, P. 2009. Storage guidelines for wood residues for biofuels. Prepared by Scion sci·on  
n.
1. A descendant or heir.

2. also ci·on A detached shoot or twig containing buds from a woody plant, used in grafting.
 Next Energy Biomaterials for the Energy Efficiency and Conservation Authority Energy Efficiency and Conservation Authority (EECA) is a New Zealand government agency responsible for promoting energy conservation. External link
  • EECA - website
.

Harkin, J. and J. Rowe. 1971. Bark and its possible uses. Research Note FPL-091. USDA USDA,
n.pr See United States Department of Agriculture.
 Forest Service, Forest Products Laboratory, Madison, Wisconsin Madison is the capital of the U.S. state of Wisconsin and the county seat of Dane County. It is also home to the University of Wisconsin–Madison.

The 2006 population estimate of Madison was 223,389, making it the second largest city in Wisconsin, after Milwaukee, and
. pp. 1-156.

Heninger, R., T. Terry, A. Dobkowski, and W. Scott. 1997. Managing for sustainable site productivity: Weyerhaeuser's forestry perspective. Biomass Bioenergy 13:255-267.

Hubbard, W., C. Biles, and M. Ashton. 2007. Sustainable forestry Sustainable forestry is a forest management practice. The basic tenet of sustainable forestry is that the amount of goods and services yielded from a forest should be at a level the forest is capable of producing without degradation of the soil, watershed features or seed source  for bioenergy and bio-based products: Trainers curriculum notebook. Southern Forest Research Partnership, Inc., Athens, Georgia Athens-Clarke County is a unified city-county in Georgia, U.S., in the northeastern part of the state, at the eastern terminus of Georgia 316. The University of Georgia is located in this college town and is responsible for the initial creation of Athens and its subsequent growth. .

Jirjis, R. 1995. Storage and drying of wood fuel. Biomass Bioenergy 9: 181-190.

Jirjis, R. 2005. Effects of particle size and pile height on storage and fuel quality of comminuted Salix viminalis Noun 1. Salix viminalis - willow with long flexible twigs used in basketry
common osier, hemp willow, velvet osier

genus Salix, Salix - a large and widespread genus varying in size from small shrubs to large trees: willows
. Biomass Bioenergy 28: 193-201.

Jones, S. B., C. Valkenburg, C. W. Walton, D. C. Elliot, J. E. Holladay, D. J. Stevens, C. Kinchin, and S. Czernik. 2009. Production of gasoline and diesel from biomass via fast pyrolysis py·rol·y·sis
n.
Decomposition or transformation of a chemical compound caused by heat.


pyrolysis (pīrol´isis),
n
, hydrotreating and hydrocracking: A design case. PNNL-18284. Pacific Northwest National Laboratory The Pacific Northwest National Laboratory (PNNL) is one of nine United States Department of Energy (DOE) multiprogram national laboratories. The laboratory
PNNL is located in Richland, Washington, and operates a marine research facility in Sequim, Washington.
, Richland, Washington Richland is a city in Benton County in southeastern Washington, at the confluence of the Yakima River and the Columbia River. As of the 2000 census, the city population was 38,708, with a 2005 population estimate of 43,520. .

Leinonen, A. 2004. Harvesting technology of forest residues for fuel in the USA and Finland. VTT VTT Technical Research Centre of Finland
VTT Valtion Teknillinen Tutkimuskeskus (Finnish: Technical Research Centre of Finland)
VTT Vélo Tout Terrain (French: mountain bike; aka ATB or MTB) 
 Tiedotteita Research Notes 2229. VTT, Espoo, Finland.

Lynch, N. J., K. L. Gering, and R. S. Cherry. 1997. Composting as a reactor design problem modeling and experimental. Ann. N. Y. Acad. Sci. 829:290-301.

Nordic Innovation Centre. 2008. NT Method: Guidelines for storing and handling of solid biofuels. NT Envir 010. Nordic Innovation Centre, Oslo.

Nurmi, J. 1999. The storage of logging residue for fuel. Biomass Bioenergy 17:41-47.

Perlack, R., L. Wright, A. Turhollow, R. Graham, B. Stokes, and D. Erbach. 2005. Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. ORNL/TM-2005/66. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Phanphanich, M. and S. Mani. 2010. Drying characteristics of pine forest Pine forest may refer to:
  1. A forest of pine trees; see temperate coniferous forest
  2. The town of Pine Forest, Texas
 residues. Bioresources 5:108-120.

Phillips, S., A. Aden, J. Jechura, D. Dayton, and T. Eggeman. 2007. Thermochemical ethanol via indirect gasification gas·i·fy  
tr. & intr.v. gas·i·fied, gas·i·fy·ing, gas·i·fies
To convert into or become gas.



gas
 and mixed alcohol synthesis of lignocellulosic biomass Lignocellulosic biomass[1] refers to plant biomass that is composed of cellulose and hemicellulose, and lignin. The carbohydrate polymers (cellulose and hemicelluloses) are tightly bound to the lignin, by hydrogen and covalent bonds. . Technical Report NREL/TP-510-41168. National Renewable Energy Laboratory, Golden, Colorado.

Pottie, M. and D. Guimier. 1985. Preparation of forest biomass for optimal conversion. Forest Engineering Research Institute of Canada/ International Energy Agency, Pointe Claire, Quebec. ISSN ISSN
abbr.
International Standard Serial Number
: 0381-7733.

Schoenholtz, S., H. van Miegroet, and J. Burger. 2000. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. Forest Ecol. Manag. 138:335-356.

Sluiter, J. and A. Sluiter. 2005. Summative mass closure: Laboratory analytical procedure (LAP) review and integration: Feedstocks. NREL NREL National Renewable Energy Laboratory
NREL Natural Resource Ecology Laboratory (Colorado State University, Fort Collins, CO) 
 Technical Report TP-510-48087. National Renewable Energy Laboratory, Golden, Colorado.

Springer, E. 1979. Should whole-tree chips for fuel be dried before storage? Research Note FPL-0241. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin.

Thornqvist, T. 1985. Drying and storage of forest residues for energy production. Biomass 7:125-134.

Weiner, J., L. Roth, E. Cowling, and W. Harley. 1974. Changes in the value and utility of pulpwood pulp·wood  
n.
Soft wood, such as spruce, aspen, or pine, used in making paper.


pulpwood
Noun

pine, spruce, or any other soft wood used to make paper

Noun 1.
, sawlogs, and veneer bolts during harvest, transport, and storage. IPC (1) (InterProcess Communication) The exchange of data between one program and another either within the same computer or over a network. It implies a protocol that guarantees a response to a request.  Bibliographic Series Number S-60. Institute of Paper Chemistry, Appleton, Wisconsin.

Western Regional Climate Center. 2010. Period of record monthly climate summary, http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl? idrexb. Accessed November 2010.

Wihersaari, M. 2005, Evaluation of greenhouse gas emission risks from storage of wood residue. Biomass Bioenergy 28:444-453.

The authors are, respectively, Biofuels Analyst, Idaho National Lab., Idaho Falls (Erin.Searcy@inl.gov [corresponding author]); Biologist, Caribou-Targhee National Forest Caribou-Targhee National Forest is located in the states of Idaho and Wyoming, with a small section in Utah in the United States. The forest is broken into several separate sections and extends over 3 million acres (12,000 km²). , Pocatello, Idaho (dbblackwelder@fs.fed.us); and Biologist (Mark.Delwiche@inl. gov), Microbiologist (Allison.Ray@inl.gov), and Harvest, Collection, and Storage Group Lead (Kevin.Kenney@inl.gov), Idaho National Lab., Idaho Falls. This paper was received for publication in September 2011. Article no. 11-00115.
Table 1.--Synopsis of initial and final data for all three piles,
with letters A, 8, and C corresponding to regions in Figures 1
through 3. (a)

             Moisture content,      Ash content, mean
            mean [+ or -] SD (%)   [+ or -] SD (% w.b.)

Unsorted
  Initial   52.32 [+ or -] 1.36     0.83 [+ or -] 0.49
  Final
    A        60.2 [+ or -] 6.9             1.28
    B        51.3 [+ or -] 4.0             0.94
    C        45.9 [+ or -] 6.9             0.83
Fines
  Initial   51.85 [+ or -] 2.65     0.88 [+ or -] 0.21
  Final
    A        56.1 [+ or -] 9.6             1.43
    B        47.4 [+ or -] 4.4             0.95
    C        28.2 [+ or -] 8.1             1.31
Overs
  Initial   51.43 [+ or -] 1.35     0.52 [+ or -] 0.11
  Final
    A        42.1 [+ or -] 4.1             0.82
    B        37.5 [+ or -] 1.8             0.82
    C        36.6 [+ or -] 6.8             0.97

                                    Density (kg/
                                     [m.sup.3])
            HHV, mean [+ or -]
                SD (kJ/kg)        Loose   Packed

Unsorted
  Initial   9,766 [+ or -] 368     274     354
  Final
    A             10,101           294     381
    B             10,245           266     314
    C             11,123           229     315
Fines
  Initial   10,134 [+ or -] 546    254     339
  Final
    A             12,260           230     302
    B             11,099           243     310
    C             11,724           234     290
Overs
  Initial   10,136 [+ or -] 284    229     291
  Final
    A             13,197           150     190
    B             12,897           144     205
    C             14,554           139     171

             Minimum/maximum    Pile weight
            temp ([degrees]C)    (wet kg)

Unsorted
  Initial          --             21,673
  Final                           15,749
    A             11.3/65           --
    B             11.3/64           --
    C             12.8/56           --
Fines
  Initial           --            22,008
  Final                           16,239
    A             20.2/63           --
    B             20.1/63           --
    C             18.8/53           --
Overs
  Initial           --            16,629
  Final                           12,002
    A              0/41.4           --
    B              0/56.8           --
    C              2.1/45           --

(a) w.b. = wet basis; HHV = higher heating value.

Table 2.--Differences in system costs for the three piles studied. (a)

                            Base case
                            (unsorted,
                            no in-field
                              drying)     Unsorted    Overs    Fines
Cost for preprocessing at
  landing ($)
  Grinding only               5.95          5.95       --        --
  Grinding and screening      --            --         7.50      7.50

MC during transport (%)      52            51         38        43
Density during transport    354           322        184       296
  (wet kg/[m.sup.3])
Cost for transportation      12.80         12.20      12.40     11.50
  and in-plant handling
  (80 km) ($) (b)

Cost to dry material to
  10% MC ($)(c)
  Waste heat dryer            3.35          3.35       2.75      2.95
  Natural gas rotary drum    12.35         11.95       9.7      10.50
    dryer

Cost to grind to 6 mm         4.6           4.6        4.6       --
  using hammer mill ($)

Cost savings over base
  case ($)
  Natural gas                 --            1.00       6.10      6.20
  Waste heat dryer            --            0.60      (0.55)     4.75

(a) Costs do not include stumpage fee or harvest and collection
costs. Costs are in 2007 US dollars per dry matter ton. MC =
moisture content.

(b) Assuming that piles are stored at landing.

(c) Natural gas dryer modeled is an Anko Eaglin, waste heat dryer
based on 160[degrees]C retention dryer design. Waste heat dryer
costing does not include any preparation required for heat.
COPYRIGHT 2011 Forest Products Society
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Author:Searcy, Erin M.; Blackwelder, D. Brad; Delwiche, Mark E.; Ray, Allison E.; Kenney, Kevin L.
Publication:Forest Products Journal
Geographic Code:1U2PA
Date:Oct 1, 2011
Words:6711
Previous Article:Logging across borders and cultures: an example in northern Maine.
Next Article:Innovation impacts on biomass supply in Maine's logging industry.
Topics:

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters