Printer Friendly

Hughes' Ion Propulsion System to Drive NASA's Deep Space 1.

TORRANCE, Calif.--(BUSINESS WIRE)--Oct. 19, 1998--The ion engines "Star Trek's" Spock dreamt of 30 years ago are now a reality.

When NASA's Deep Space 1 spacecraft is launched from Cape Canaveral this month, it will carry a revolutionary ion propulsion system designed with NASA and manufactured by Hughes Electron Dynamics Division, a unit of Hughes Electronics Corp.

The NASA Solar Electric Power Technology Application Readiness (NSTAR) 30-centimeter system, consisting of an ion thruster, power processor, and digital control and interface units, was designed specifically to support NASA's future requirements. It is being validated by the New Millennium Deep Space 1 project.

Unlike its commercial satellite counterpart that uses a xenon ion propulsion system, XIPS (pronounced "zips"), for north-south stationkeeping and for orbit raising, the NSTAR system will be the primary propulsion system for the Deep Space 1 spacecraft.

The Deep Space 1 spacecraft may be the first of several to use the NSTAR system. Under the $8.1 million contract that was awarded by NASA to Hughes Electron Dynamics Division in 1995, two flight thrusters, and associated power processor and digital control and interface units, were produced.

The advantage of ion propulsion is efficiency. Ion propulsion is 10 times more efficient than chemical thrusters. This translates into a reduction of propellant mass of up to 90%. For commercial communications satellites, the reduced propellant mass creates an option to reduce launch cost, increase payload, or increase satellite lifetime, or any combination of the above.

For Deep Space 1, the improved propellant efficiency of the NSTAR system results in a lighter spacecraft that will reach its destination in half the time. Deep Space 1 is currently scheduled to reach the near-Earth asteroid 1992 KD in July 1999.

By Oct. 1999, Deep Space 1 will have completed its primary mission and will be on a trajectory that could result in an encounter with Comets Wilson-Harrington and Borelly in 2001.

"XIPS is the result of more than 40 years or research by Hughes and NASA. The NSTAR 30-centimeter system was designed to meet very specific operational parameters," said Tim Fong, manager of Hughes Electron Dynamics Division.

"The NSTAR ion propulsion system on Deep Space 1 requires operation over a wide range of thrust and input power, since the solar power available drops significantly as the spacecraft goes further away from the sun. This NSTAR system is remotely programmable, allowing NASA to adjust its thrust to meet these changing conditions over the life of the mission."

In addition to the 30-centimeter NSTAR system designed for NASA, Hughes Electron Dynamics Division also produces two commercial XIPS systems: a 13-centimeter unit that is an option on the HS 601 spacecraft built by Hughes Space and Communications Co., and a 25-centimeter version that will debut on Hughes' first HS 702 in early 1999.

Hughes Electron Dynamics Division built the first commercial XIPS system, which was launched Aug. 28, 1997, on PAS-5, an HS 601HP satellite for PanAmSat Corp.

Hughes Electron Dynamics Division is a world leader in the design and manufacture of microwave, traveling wave-tube amplifiers, and ion thrusters for commercial and military applications. The earnings of Hughes Electronics are used to calculate the earnings per share attributable to GMH (NYSE symbol) common stock.
COPYRIGHT 1998 Business Wire
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 1998, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Publication:Business Wire
Date:Oct 19, 1998
Words:537
Previous Article:Thomas Ferguson Associates Promotes Four Employees Based On Contributions and Client Growth.
Next Article:Sales Trend Continues Up At Pure World.


Related Articles
A Voyager goes the distance.
Speeding to the solar system's edge.
French Company Sees the Benefits of Plasma Propulsion.
Probe's comet encounter yields close-ups.
A VIEW FROM NASA'S SHUTTLE ANTELOPE VALLEY MAPPED BY RADAR.
NASA BOARD NAMED TO INVESTIGATE WHAT HAPPENED TO X-42.
JPL TELLS OF LIKELY ASTEROID COLLISION.
LOCKHEED WINS 10-YEAR NASA CONTRACT; CONTRACTOR PICKED TO RUN AGENCY'S SPACE OPERATIONS.
ION-FUELED DEEP SPACE 1 PROBE TO DO CUT-RATE CRUISE OF COSMOS.
JOINT'S JUMPING AS JPL BUILDS PACK OF PROBES.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters