Printer Friendly
The Free Library
22,728,043 articles and books

Flow cytometry and T-cell response monitoring after smallpox vaccination.



Orthopoxvirus zoonosis Zoonosis Definition

Zoonosis, also called zoonotic disease refers to diseases that can be passed from animals, whether wild or domesticated, to humans.
 or smallpox as result of bioterrorism or biological warfare biological warfare, employment in war of microorganisms to injure or destroy people, animals, or crops; also called germ or bacteriological warfare. Limited attempts have been made in the past to spread disease among the enemy; e.g.  represents a risk for epidemic spread. By monitoring T-cell responses by flow cytometry, we observed a recall response after recent vaccination against smallpox. When the high similarity between the orthopoxviruses is considered, this rapid assay that uses vaccinia vac·cin·i·a
n.
1. See cowpox.

2. An infection induced in humans by inoculation with the vaccinia virus in order to confer resistance to smallpox; it is usually limited to the site of inoculation.
 antigens could identify recently exposures.

**********

Although the last natural case of smallpox was reported in Somalia in 1977, this orthopoxvirus remains a source of concern. No evidence exists that smallpox will recur as an endemic disease, but the virus may have been acquired for use in biological warfare or bioterrorist attacks. If one assumes an average of 15 days is needed for infected persons to become infectious, delay in intervention will be costly, increasing the total number of cases (l). Furthermore, the recent outbreak of the severe acute respiratory syndrome Severe Acute Respiratory Syndrome (SARS) Definition

Severe acute respiratory syndrome (SARS) is the first emergent and highly transmissible viral disease to appear during the twenty-first century.
 coronavirus coronavirus /co·ro·na·vi·rus/ (ko-ro´nah-vi?rus) any virus belonging to the family Coronaviridae.
Coronavirus /Co·ro·na·vi·rus/ (ko-ro´nah-vi?rus 
 and the first documented outbreak of monkeypoxvirus in the Western Hemisphere underline the ever-present risk for epidemic extension of zoonosis and raise concerns about the medical and social effect of reemerging orthopoxvirus infection in humans. During the epidemic spread of an emerging pathogen, evaluating exposed persons and containing the infected population should be the first priorities. A local outbreak of orthopoxvirus infection would require rapid and sensitive diagnostics, including novel assays based on host responses.

For intracellular pathogens, the antibody titers and neutralization neutralization, chemical reaction, according to the Arrhenius theory of acids and bases, in which a water solution of acid is mixed with a water solution of base to form a salt and water; this reaction is complete only if the resulting solution has neither acidic nor  assays represent routine immunologic tests that provide results after several weeks of infection. The appearance of a detectable antibody titer takes place a few days after the induction of a T-cell response (2). Moreover, antigen-specific T-cell responses could be detected in exposed, but uninfected persons, as shown in those with HIV HIV (Human Immunodeficiency Virus), either of two closely related retroviruses that invade T-helper lymphocytes and are responsible for AIDS. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is responsible for the vast majority of AIDS in the United States.  infection (3). Using a rapid flow cytometric test, we previously showed that monitoring interferon (IFN IFN
abbr.
interferon



IFN

interferon.

IFN Interferon, see there
)-[gamma] production by antigen-pulsed T cells provides a quantitative and functional assessment of HIV- or cytomegalovirus cytomegalovirus (sī'təmĕg'əlōvī`rəs), member of the herpesvirus family that can cause serious complications in persons with weakened immune systems.  (CMV CMV cytomegalovirus.

CMV
abbr.
1. controlled mechanical ventilation

2. cytomegalovirus


Cytomegalovirus (CMV) 
)-specific CD8(+) and CD4(+) T cells (4-6). This technique requires that whole proteins or selected peptide antigens are added to blood cells, allowing the simultaneous analysis of both major histocompatibility complex major histocompatibility complex
n.
Abbr. MHC A chromosomal segment that codes for cell-surface histocompatibility antigens and is the principal determinant of tissue type and transplant compatibility. Also called HLA complex.
 class I and II restricted T-cell responses (7). Because smallpox vaccination was recently shown to induce a strong vaccinia virus-specific CD8(+) CTL- and IFN-[gamma]-producing T cells detectable by more cumbersome research laboratory methods (cytotoxic, proliferative, or ELISPOT ELISPOT Enzyme-Linked Immunospot Assay
ELISPOT Interferon-Gamma Enzyme-Linked Immunospot
 assays) (8,9), we evaluated the feasibility of an easy, rapid and sensitive assay to monitor T-cell responses after recent vaccination against smallpox the assay can potentially be used as a routine diagnostic assay.

The Study

T-cell reactivity was analyzed after recent (<2 years ago) smallpox vaccinations, in long-term vaccinated (>20 years ago) and not vaccinated persons. Briefly, peripheral blood mononuclear mononuclear /mono·nu·cle·ar/ (-noo´kle-er)
1. having but one nucleus.

2. a cell having a single nucleus, especially a monocyte of the blood or tissues.


mon·o·nu·cle·ar
adj.
 cells (PBMC PBMC Peripheral Blood Mononuclear Cell ) were isolated by standard density centrifugation Centrifugation

A mechanical method of separating immiscible liquids or solids from liquids by the application of centrifugal force. This force can be very great, and separations which proceed slowly by gravity can be speeded up enormously in centrifugal
 (Ficoll-Hypaque, Pharmacia, Uppsala, Sweden). Stimulation was also performed on whole blood samples; however, the assay had reduced sensitivity. We cannot exclude the possibility that whole blood assay sensitivity could be improved by changing protocol conditions (data not shown). PBMC were cultured in complete Roswell Park Memorial Institute 1640 medium, 10% v/v heat-inactivated fetal calf serum, 2 mM L-glutamine, and 10 U/mL penicillin/streptomycin at a concentration of 10 (6) cells/mL. Stimulation was performed with 40 [micro]L/mL (total protein content of approximately 1 [micro]g/mL) of vaccinia viral antigen resuspended according to the manufacturer's instructions (Maine Biotechnology Services, Portland, ME), or 2 [micro]g of CMV antigen (Biowhittaker, Walkersville, MD), always in the presence of co-stimulation with both anti-CD28 and CD49d monoclonal antibodies (1 [micro]g/mL, Becton, Dickinson and Company, Franklin Lakes, N J). We also tested the T-cell response with live vaccinia-infected fibroblast fibroblast /fi·bro·blast/ (fi´bro-blast)
1. an immature fiber-producing cell of connective tissue capable of differentiating into chondroblast, collagenoblast, or osteoblast.

2.
 or Vero cells. The response against uninfected antigenic preparations was always above background, reducing the sensitivity of the assay (data not shown); therefore, the commercially available antigens were used in subsequent experiments. Cultures were incubated at 37 [degrees] C for 1 h, followed by an additional overnight incubation with 10 [micro]g/mL of the secretion inhibitor Brefeldin-A (Sigma-Aldrich Corporation, St. Louis, MO). Cells were washed twice in phosphate-buffered saline, 1% bovine serum albumin, and 0.1% sodium azide, and stained for 15 min at 4 [degrees] C with monoclonal antibodies specific for cell surface CD antigens (Becton, Dickinson and Company). Samples were then fixed in 1% paraformaldehyde paraformaldehyde: see formaldehyde.  for 10 min at 4 [degrees] C, incubated with Phyco-Erithrin-conjugated mouse-anti-human IFN-[gamma] (Becton, Dickinson and Company), washed twice in phosphate-buffered saline, 1% bovine serum albumin, and 0.1% saponin saponin: see soap plant. , and resuspended in FACSFlow before being acquired on FACScalibur (Becton, Dickinson and Company), as previously described (4,6). Controls for nonspecific nonspecific /non·spe·cif·ic/ (non?spi-sif´ik)
1. not due to any single known cause.

2. not directed against a particular agent, but rather having a general effect.


nonspecific

1.
 staining were monitored with isotype-matched monoclonal antibodies (Becton, Dickinson and Company); cells incubated with only anti-CD28 and -CD49d were included in each experiment and nonspecific staining was always subtracted from specific results. In the cytometric panels shown in the Figure, the IFN-[gamma] production by CD3 (-) cells is 1 log lower in intensity compared to the antigen-specific CD3(+) T-cell response, representing an unspecific Adj. 1. unspecific - not detailed or specific; "a broad rule"; "the broad outlines of the plan"; "felt an unspecific dread"
broad

general - applying to all or most members of a category or group; "the general public"; "general assistance"; "a general rule";
 response that may involve natural killer cells natural killer cells,
n.pl lymphocytes that are part of innate immunity that kill foreign substances and abnormal tissues. Decreased number or activi-ty has been linked to a number of diseases, including AIDS, cancer, chronic fatigue syndrome,
. To monitor antigen-specific T-cell responses, we collected data only from CD3(+) T cells producing higher amounts of IFN-[gamma]. Negative control antigenic stimulation was always below the detection limit of the assay (0.02%).

Cytometric panels in the Figure show the IFN-[gamma] synthesis by CD3(+) T cells after in vitro stimulation with vaccinia virus or CMV antigens. As shown in panels D, E, and F, all donors were strongly reactive to the CMV antigens (0.87%, 0.20%, and 1.53% of CD3(+) T cells respectively; the numbers of CMV-specific CD3(+) T cells per blood milliliter milliliter /mil·li·li·ter/ (mL) (-le?ter) one thousandth (10-3) of a liter.

mil·li·li·ter
n. Abbr.
 were 13,132, 2,964, and 11,385, respectively). As previously described (6), most of the CMV-specific response was related to CD4(+) T cells (96%, 75%, and 59% of CMV-specific T cells, respectively). Both unvaccinated and long-term vaccinated healthy donors had undetectable responses to smallpox vaccinia antigens (Figure, panels A and B). In contrast, a recall response was detectable after a recent immunization immunization: see immunity; vaccination.  (Figure, panel C). In this case, the percentage of T cells specific for smallpox vaccine antigens was 0.23% among CD3(+) T cell, and the number of vaccinia antigen-specific cells was 1,725 per blood mL corresponding to a frequency of 1/667. Most vaccinia-specific T cells detected by this assay were CD4(+) (vaccinia-specific CD4(+) T cells were 80% of vaccinia-specific T cells). Nevertheless, the sensitivity of this assay to detect CD8(+) T cells could be improved by using human leukocyte antigen human leukocyte antigen
n. Abbr. HLA
A gene product of the major histocompatibility complex; these antigens have been shown to have a strong influence on human allotransplantation, transfusions in refractory patients, and certain disease
 (HLA HLA human leukocyte antigens.

HLA
abbr.
human leukocyte antigen


HLA (human leuckocyte antigen) 
) class I specific peptides as previously described (4).

Conclusions

Vigorous and long-lasting protective immune responses have been associated with smallpox vaccination, and specific immunity is believed to be maintained for decades (10,11). In long-term vaccinated persons, virus-specific CD4(+) and CD8(+) T-lymphocytes are detectable only after extensive in vitro culture and restimulation to generate antigen-specific lines or clones. This limitation is due to the long, but limited, lifespan of memory T cells and to their low frequency, usually below 1/50,000 (12). Our in vitro rapid assay based on a short-time primary T-cell response was unable to show the residual memory T-cell response present in long-term vaccinated persons since the assay sensitivity is I log lower but could detect the higher frequencies of IFN-[gamma]--producing antigen-specific cells appearing a few weeks after smallpox vaccine inoculation (8). Accordingly, Terajima et al. (13) demonstrated that T-cell responses to vaccinia and variola variola /va·ri·o·la/ (vah-ri´o-lah) smallpox.vari´olarvari´olous

va·ri·o·la
n.
See smallpox.



va·ri
 conserved epitopes peak 14 days after primary immunization with vaccinia virus. In this study, the frequency of antigen-specific T cells was measured as IFN-[gamma] production by ELISPOT and HLA/peptide tetramer--staining methods. Because strong correlations between the data derived from ELISPOT, tetramer tet·ra·mer
n.
A polymer consisting of four identical monomers.



tetra·mer
 assays, and intracellular cytokine Cytokine

Any of a group of soluble proteins that are released by a cell to send messages which are delivered to the same cell (autocrine), an adjacent cell (paracrine), or a distant cell (endocrine).
 staining for IFN-[gamma] were previously observed (14), vaccinia-specific T cells could be detected by flow cytometry only a few days after immunization with vaccinia virus. In addition, Pincus and Flick demonstrated the initial development of delayed hypersensitivity, an index of cell-mediated immunity, as early as 2 days after smallpox vaccination (15). During viral infection, high levels of virus-specific T cells are found in acute infection, falling below detectable limits as the viral load decreases and reappearing in chronic infections during episodes of transient viremia viremia /vi·re·mia/ (vi-re´me-ah) the presence of viruses in the blood.

vi·re·mi·a
n.
The presence of viruses in the bloodstream.
. Accordingly, we observed that the frequencies of HIV-specific CD8(+) T cells releasing IFN-[gamma] were quantitatively increased a few weeks after viral rebound consequent to the interruption of antiviral therapy (5). These observations indicate that the frequency of virus-specific T cells is clinically relevant, which suggests that this method may be useful in detecting immune response by monitoring the frequency of virus-specific T cells. In recently vaccinated persons, memory cells are expanded by antigen reexposure, and their increase in frequency could be quantitatively detected by the rapid flow cytometric T-cell assay, confirming the efficacy of vaccination. Moreover, because of the high similarity between orthopoxviruses, this rapid assay using vaccinia antigens could be used to identify recently exposed persons.

Finally, an important aspect in developing a diagnostic assay is to use a rapid and easily automated system that works on virtually all persons who carry the disease. In this context, the intracellular T-cell cytokine staining by flow cytometry presents several advantages in comparison to other techniques, such as tetramer staining and ELISpot (4). In fact, flow cytometry allows for testing multiple proteins or peptides at a single time and provides at the same time a quantitative and phenotypic assessment of CD8(+) and CD4(+) responding T cells. Moreover, optimization of antigen preparation with peptide pools designed to be virus-specific, highly conserved, and independent of HLA haplotypes may allow for the development of a second generation of more sensitive flow cytometric T-cell assays, extending the possibility to perform routine analysis on cryopreserved samples (4). The technique could be easily automated through the use of analytical instruments already available in most clinical laboratories that use flow cytometry. In comparison with other analytical systems for assessing antigen-specific responses, this method is economically advantageous. The recent availability of mobile flow-cytometer units may allow use of this assay under field investigation conditions.

This study was supported by grants from the "Ministero della Salute."

Dr. Poccia is senior scientist at the National Institute for Infectious Diseases "Lazzaro Spallanzani" of Rome. His research activity is related to emerging and reemerging infections, focusing on innate immunity and host-pathogen interactions. His main interests are translational research to develop novel diagnostic assays based on physiological and immune host responses, tools for clinical monitoring of immune reconstitution, and broad-spectrum immunostimulants.

References

(1.) Meltzer MI, Damon I, LeDuc JW, Millar JD. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg Infect Dis 2001;7:959-69.

(2.) Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG. Effector effector /ef·fec·tor/ (e-fek´ter)
1. an agent that mediates a specific effect.

2. an organ that produces an effect in response to nerve stimulation.
 CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections, Immunol Rev 1997;159:105-17.

(3.) Pinto LA, Sullivan J, Berzofsky JA, Clerici M, Kessler HA, Landay AL, et al. ENV-specific cytotoxic T lymphocyte cytotoxic T lymphocyte CTL, cytotoxic T cell Immunology A subset of T cells with a CD8 receptor on the surface that recognizes and lyses malignant or virally-infected self cells bearing self, ie 'haplotype restricted', class I MHC molecules.  responses in HIV seronegative seronegative /se·ro·neg·a·tive/ (-neg´ah-tiv) showing negative results on serological examination; showing a lack of antibody.

se·ro·neg·a·tive
adj.
 health care workers occupationally exposed to HIV-contaminated body fluids. J Clin Invest 1995;96:867-76.

(4.) Amicosante M, Gioia C, Montesano C, Casetti R, Topino S, D'Offizi G, et al. Computer-based design of an HLA-haplotype and HIV-clade independent cytotoxic T-lymphocyte assay for monitoring HIV-specific immunity. Mol Med 2002;8:798-807.

(5.) D'Offizi G, Montesano C, Agrati C, Gioia C, Amicosante M, Topino S, et al. Expansion of pre-terminally differentiated CD8 T cells in chronic HIV-positive patients presenting a rapid viral rebound during structured treatment interruption. AIDS 2002;16:2431-8.

(6.) D'Offizi G, Ciapparoni V, Gioia C, Goletti D, Agrati C, Pucillo LP, et al. The loss of CMV-specific CD27(-) T-cell effectors in a patient with recurrences of CMV retinitis retinitis /ret·i·ni·tis/ (ret?i-ni´tis) inflammation of the retina.

retinitis circina´ta , circinate retinitis circinate retinopathy.
 is independent of HIV-1 vitamin. Infection 2002;30:323-5.

(7.) Betts MR, Casazza JR Koup RA. Monitoring HIV-specific CD8+ T cell responses by intracellular cytokine production, Immunol Lett 2001;79:117-25.

(8.) Ennis FA, Cruz J, Demkowicz WE Jr, Rothman AL, McClain DJ. Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination. J Infect Dis 2002;185:1657-9.

(9.) Frey SE, Newman FK, Cruz J, Shelton WB, Tennant JM, Polach T, et al. Dose-related effects of smallpox vaccine. N Engl J Med 2002;346:1275-80.

(10.) Demkowicz WE Jr, Ennis FA. Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans. J Virol 1993;67:1538-44.

(11.) Littaua RA, Takeda A, Cruz J, Ennis FA. Vaccinia virus-specific human CD4+ cytotoxic T-lymphocyte clones. J Virol 1992;66:2274-80.

(12.) Demkowicz WE Jr, Littaua RA, Wang J, Ennis FA. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J Virol 1996;70:2627-31.

(13.) Terajima M, Cruz J, Raines CA Kilpatrick ED, Kennedy JS, Rothman AL, et al. Quantitation of CD8+ T cell responses to newly identified HLA-A*0201-restricted T cell epitopes conserved among vaccinia and variola (smallpox) viruses. J Exp Med 2003;197:927-32.

(14.) Goulder PJ, Tang Y, Brander C, Betts MR, Altfeld M, Annamalai K, et al. Functionally inert HIV-specific cytotoxic T lymphocytes do not play a major role in chronically infected adults and children. J Exp Med 2000;192:1819-32.

(15.) Pincus WB, Flick JA. The role of hypersensitivity hypersensitivity, heightened response in a body tissue to an antigen or foreign substance. The body normally responds to an antigen by producing specific antibodies against it. The antibodies impart immunity for any later exposure to that antigen.  in the pathogenesis of vaccinia virus in humans. J Pediatr 1963;62:57-62.

Address for correspondence: Fabrizio Poccia, National Institute for Infectious Diseases "L. Spallanzani," I.R.C.C.S., Padiglione Del Vecchio, Via Portuense 292, 1-00149 Rome, Italy; fax: ++39-06-55170-904; email: poccia@inmi.it

Fabrizio Poccia, * Cristiana Gioia, * Carla Montesano, * Federico Martini, * Douglas Horejsh, * Concetta Castilletti, * Leopoldo Paolo Pucillo, * Maria Rosaria Capobianchi, * and Giuseppe Ippolito *

* National Institute for Infectious Diseases "Lazzaro Spallanzani," Rome, Italy
COPYRIGHT 2003 U.S. National Center for Infectious Diseases
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2003, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Dispatches
Author:Ippolito, Giuseppe
Publication:Emerging Infectious Diseases
Date:Nov 1, 2003
Words:2245
Previous Article:Dengue-1 virus isolation during first dengue fever outbreak on Easter Island, Chile.
Next Article:Shigella dysenteriae serotype 1, Kolkata, India.
Topics:



Related Articles
Developing new smallpox vaccines. (Perspectives).
Vaccine for all? Math model supports mass smallpox inoculation. (Science News This Week).
Smallpox vaccine has lasting effect. (Memorable Shot).
Risks and benefits of preexposure and postexposure smallpox vaccination. (1).
Frequency of revaccination against smallpox.
Ring vaccination and smallpox control.
Smallpox vaccination and adverse cardiac events.
Surveillance and control measures during smallpox outbreaks.
Ocular vaccinia infection in laboratory worker, Philadelphia, 2004.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters