Printer Friendly

Effect of different seed priming on germination rate and seedling growth of Ziziphus spina-christi.


The genus Ziziphus Noun 1. genus Ziziphus - spiny chiefly tropical American and Asiatic shrubs: jujubes

dicot genus, magnoliopsid genus - genus of flowering plants having two cotyledons (embryonic leaves) in the seed which usually appear at germination
 belong to the Rhamnaceae family consists of 100 species of evergreen or deciduous deciduous /de·cid·u·ous/ (de-sid´u-us) falling off or shed at maturity, as the teeth of the first dentition.

 trees or shrubs distributed in tropical and subtropical sub·trop·i·cal  
Of, relating to, or being the geographic areas adjacent to the Tropics.


of the region lying between the tropics and temperate lands

 regions of the world. Spina-christi is one of the wild species of Ziziphus that grows in the form of shrub or little bushes, that strongly resists heat and drought. It develops very deep taproot taproot

Main root of a primary-root system. It grows vertically downward. From the taproot arise smaller lateral roots (secondary roots), which in turn produce even smaller lateral roots (tertiary roots).
 and has an extraordinary regenerative power. It has edible fruit and in addition different parts of plant such as leaf, bark and root have been used in folk medicine folk medicine, methods of curing by means of healing objects, herbs, or animal parts; ceremony; conjuring, magic, or witchcraft; and other means apart from the formalized practice of medical science.  [18].

Ziziphus is commonly propagated by seeds, therefore it exhibits a wide genetic heterogeneity [21] and the fruits show variability in size and quality. At present, the seedling are used as a rootstock rootstock: see rhizome.  for cultivars with high fruit quality.

The seeds of Z. spina-christi possess hard woody seed-coat which hamper germination germination, in a seed, process by which the plant embryo within the seed resumes growth after a period of dormancy and the seedling emerges. The length of dormancy varies; the seed of some plants (e.g. . Moreover, slow growth of the seedlings in the first year of sowing is one of the problems that put a limit on the growing of this species [2,19]. Different techniques have been used to improve seed germination and seedling growth [18]. Having seedling with enhanced and identical growth is the main step in producing grafted sapling in nursery.

One seed treatment method that has been proved to be successful in improving seed germination and emergence is priming. Seed priming is a controlled hydration hydration /hy·dra·tion/ (hi-dra´shun) the absorption of or combination with water.

1. The addition of water to a chemical molecule without hydrolysis.

 treatment at low water potential that allows pre-germinative metabolism to proceed, but prevents radicle emergence [4]. This metabolic advancement at low water potential is expressed as a more rapid radicle emergence rates when seeds are transferred to higher water potential. Different substances are used as osmotica which lower the water potential such as PEG, NaCl, KN[O.sub.3], ZnS[O.sub.4] and CaCl2, etc. Seed priming has been successfully demonstrated to improve germination and emergence in seeds of many vegetable and field crops under normal as well as stress condition [3,6,7,8,11,18,20]. It has been showed that the types of substances with same osmotic osmotic,
adj pertaining to osmosis.

osmotic pressure,
n See pressure, osmotic.


emanating from or pertaining to the pressure of osmosis.
 potential had different effect on seedling vigor. For example, in rice, osmopriming with CaCl2 was the more effective than KCl and hydropriming [9]. In tomato, the primed seeds with KNO KNO Knobloch Syndrome 3 were produced the seedling with better growth than the seeds primed with NaCl [9]. In another research the seeds of hot pepper were treated with distilled water, sodium chloride sodium chloride, NaCl, common salt. Properties

Sodium chloride is readily soluble in water and insoluble or only slightly soluble in most other liquids. It forms small, transparent, colorless to white cubic crystals.
, salicylic acid salicylic acid or 2-hydroxybenzoic acid, C6H4(OH)CO2H, a colorless, crystalline organic carboxylic acid that melts at 159°C;; it is soluble in ethanol and ether but is only slightly soluble in water. , ascorbic acid and PEG-8000 as priming agents, the best priming treatment was KNO3 which reduced the germination time by 50%, and also improved the stem and root length and fresh weight of seedling [1]. Although with increasing moisture stress progressively by PEG solutions, seed germination of Ziziphus lotus was inhibited, but seeds germinated well in distilled water, after PEG treatments [15]. Farooq et al., [9] reported that seeds subjected to NaCl priming resulted in improving germination and seedling vigor by dormancy breakdown as compared to untreated seeds. Z. spina-christi is widely found in many parts of Iran, particularly in the south, where different orchards have been established for fruit production.

The aim of this research was to investigate the type and concentration of priming solution to ameliorate germination% and seedlings growth of spina-christi.

Materials and Methods

The fruits of spina-christi locally known as 'konar' were procured from Baqu Plantation in Bandar Abbas and they were transferred to the laboratory. Fruits exocarp, mesocarp and hard endocarp were separated. The seeds viability was tested randomly on some seeds by mean of tetrazolium. The rest of seeds were used in this experiment. The seeds were surface sterilized by dipping in Mancozeb solution (a fungicide fungicide (fŭn`jəsīd', fŭng`gə–), any substance used to destroy fungi. Some fungi are extremely damaging to crops (see diseases of plants), and others cause diseases in humans and other animals (see fungal infection).  1000 mg/l) for 10 minute. After that, the seeds were primed in solutions of sodium chloride of 0, 4, 8, 12 and 16 dS/m, Zinc sulfate of 0, 4, 8, 12 and 16 dS/m (osmopriming), distilled water (D.W.) and distilled water at 40[degrees]C (D.W. 40[degrees]C) (hydro-priming). The seeds were soaked in above solutions for 12 hr and a lot of seeds were used as control (without priming). So the treatments were:

Control = seeds without treatment; and

T1 = distilled water (D.W.); T2 = D.W. at 40[degrees]C; T3 = NaCl 4dS/m; T4 = NaCl 8dS/m;

T5 = NaCl 12dS/m; T6 = NaCl 16dS/m; T7 = ZnS[O.sub.4] 4dS/m; T8 = ZnS[O.sub.4] 8dS/m;

T9 = ZnS[O.sub.4] 12dS/m and T10 = ZnS[O.sub.4] 16dS/m

Afterward, the seeds were removed from solutions and they were dried in room temperature so that their humidity was reduced to 6-7%. For germination test, the primed and non-primed seeds (25 seeds/petri dishe) were placed on filter paper (Whatman No.2 ) in petri dishes and irrigated with distilled water. After 15 days the germination percentage was recorded. Seeds with both a normal plumule and radicle were considered germinated [13]. The germinated seeds of each group were separately sown into plastic containers containing perlite perlite
 or pearlstone

Natural glass with concentric cracks such that the rock breaks into small, pearl-like bodies. It is formed by the rapid cooling of viscous lava or magma.
. The containers were placed in a light and dark period of 12 hr at 20[degrees]C and 60-70% relative humidity relative humidity
The ratio of the amount of water vapor in the air at a specific temperature to the maximum amount that the air could hold at that temperature, expressed as a percentage.
 and they were irrigated with distilled water. After 45 days, 5 seedlings randomly were selected from every container and growth characteristics such as stem (shoot) and root length, the fresh and dry weight of stem as well as the fresh and dry weight of the root and also the number of leaves and spins were measured.

The experiment was conducted in completely random design with 4 replications and 25 seeds in each replication. Data were subjected to analysis of variance using SPSS A statistical package from SPSS, Inc., Chicago ( that runs on PCs, most mainframes and minis and is used extensively in marketing research. It provides over 50 statistical processes, including regression analysis, correlation and analysis of variance.  statistical software (SPSS Inc. Chicago.USA, version 15). The means were compared using Tukeys test at 5% of probability.

Results and Discussion

The results showed that, all treatments of priming, hydro-priming (D.W. and D.W. at 40[degrees]C) and osmopriming (different concentrations of NaCl and ZnS[O.sub.4]) showed a germination rate (P < 0.05) higher than control (seeds without treatment) (Fig1). In fact, the seeds in control did not show any germination. It seems that the spina-christi seeds have two type of dormancy; physical and physiological. For breaking physical dormancy, hard seed coat has been removed. Since with seed priming germination has been improved, it can be concluded that hydro and osmopriming can affect on physiological dormancy breaking. Farooq et al.,[9] also concluded that priming seeds with NaCl improved seed germination rate and seedling vigor by dormancy breakdown. The highest germination rate (18.11%) occurred in ZnS[O.sub.4] solution with electrical conductivity (EC) of 8dS/m (T8) which was higher than that in ZnS[O.sub.4] solution with EC 16dS/m (T10) (P < 0.05). It means that high concentration of ZnS[O.sub.4] had adverse effect on the germination rate. It has been reported that, although priming improve the rate of germination, synchronous seedling emergence and growth, the effectiveness of different priming agents varies with different concentration of priming solution and crop species[12]. Faster emergence rate after priming may be due to increased rate of cell division in the root tips of seedlings from primed seeds as reported in wheat [5] and tomato [9].

Upon sowing, primed seeds can rapidly imbibe and revive the seed metabolism, resulting in rapid and higher germination rate. It has been reported that seed priming resulted antioxidant antioxidant, substance that prevents or slows the breakdown of another substance by oxygen. Synthetic and natural antioxidants are used to slow the deterioration of gasoline and rubber, and such antioxidants as vitamin C (ascorbic acid), butylated hydroxytoluene  increment as glutathione glutathione: see coenzyme.  and ascorbite in seed. These enzyme make more germination speed via reduction of lipid peroxidation activity [19].

The produced seedlings from the seeds primed in ZnS[O.sub.4] solution with EC 8dS/m (T8) provided significantly higher shoot length than those in NaCl solutions with EC of 8 (T4) and 12 dS/m (T5) (Fig 2). These results are in agreement with the results obtained by Nematollahi et al (2009) on cumin cumin or cummin (both: kŭm`ĭn), low annual herb (Cuminum cyminum) of the family Umbelliferae (parsley family), long cultivated in the Old World for the aromatic seedlike fruits.  and also Amjad et al., [1] that indicated, halopriming and osmopriming resulted in an increase in the stem length of hot pepper seedling.

The highest root length produced in seeds treated for 12 h in D.W. which was not significantly different from those in 8 dS/m ZnS[O.sub.4] and they were higher than the root length in different levels of NaCl and ZnS[O.sub.4] solutions (Fig2). It has been also showed by Nematollahi et al., [17] that the root length increased in the seedling produced from the cumin seeds primed with water, sodium chloride and zinc sulfate.

Concerning fresh and dry weight, the results showed that the highest amount of shoot F.W. achieved in ZnS[O.sub.4] 8dS/m (T8) which was significantly higher than those produced in NaCl solutions with EC of 4 and 8 dS/m. Amjad et al., [1] also showed that shoot F. W. increased with priming the seeds of hot pepper using ZnS[O.sub.4.] All primed seeds showed a higher shoot dry weight than unprimed seeds but, there was not significant differences between them (Fig3). However, Mohammadi et al., [16] and Khan et al., [14] indicated that the seeds priming with sodium chloride in canola and hot pepper respectively bring about a rise in the dry weight of the seedling.

Root fresh and dry weight have been affected by types and concentration of priming (Fig4). The greatest root fresh weight (64 mg/g) occurred in D.W. at 40[degrees]C which was significantly higher than control, T3, T4 and T9. But, there was no significant difference between diverse treatments of ZnS[O.sub.4] except T9 which was significantly lower than T1. Osmopriming with NaCl and ZnS[O.sub.4] proved superiority over control in enhancing the seed performance under normal condition. Significant improvement in root and shoot length may be attributed to earlier germination induced by primed over unprimed seeds [9, which resulted in vigorous seedlings with more root and shoot length than the seedlings from unprimed seeds.

The results showed that seedlings originated from the seeds primed with different solutions of ZnS[O.sub.4] had better performance and produced more leaf and spin than those originated from the seeds primed with different solutions of NaCl. The maximum leaf and spin produced in 12 dS/m of ZnS[O.sub.4] (Table 1). The reason may be due to this fact that, in higher plants zinc is either required for, or at least modulates, the activity of a large number of various types of enzymes, including dehydrogenases, aldolases, isomerases and transphosphorylases. Many zinc-dependent enzymes are involved in carbohydrate metabolism in general and of leaves in particular. Besides its function in the carbonic anhydrase carbonic anhydrase /car·bon·ic an·hy·drase/ (an-hi´-dras) an enzyme that catalyzes the decomposition of carbonic acid into carbon dioxide and water, facilitating the transfer of carbon dioxide from tissues to blood and from blood to  reaction, zinc is required, for example, for the activity of two other key enzymes, fructose 1,6-bisphosphatase and the aldolase aldolase /al·do·lase/ (al´do-las)
1. aldehyde-lyase.

2. an enzyme that acts as a catalyst in the production of dihydroxyacetone phosphate and glyceraldehyde phosphate from fructose 1,6-bisphosphate.

Farooq et al., [10] reported that all the seed priming techniques significantly improved the a-amylase activity, soluble sugars and dehydrogenase dehydrogenase /de·hy·dro·gen·ase/ (de-hi´dro-jen-as?) an enzyme that catalyzes the transfer of hydrogen or electrons from a donor, oxidizing it, to an acceptor, reducing it.

 activity compared with untreated control. Activity of dehydrogenase, an index of tissue respiration tissue respiration
The interchange of gases that occurs between the blood and the tissues. Also called internal respiration.
 and metabolism, and that of a-amylase as starch hydrolyzing enzyme.


In conclusion, seed germination was affected by all treatments of priming. Seeds without priming did not show any germination. ZnS[O.sub.4] especially in 8 dS/m was the most effective, because in addition to increasing germination rate, the seedling were more vigorous than the other treatments.


[1.] Amjad, M., K. Ziaf, Q. Igbal, I. Ahmad and M.A. Riaz, 2007. Effect of seed priming on seed vigour and tolerance in hot pepper. Pakistn Journal of Agricultural Science, 44(3): 408-416.

[2.] Assareh, M., 2008. Biological characteristics of Ziziphus trees in Iran and introduction of other Ziziphus species. Iran Research Institute of Forest and Rangland.57 pages. (In Persian).

[3.] Barasa, S.M.A., M. Farooq and R. Tabassum, 2005. Physiological and biochemical aspects of seed vigor enhancement treatments in fine rice (Oryza sativa L.). Seed Science and Technology, 33: 623-628.

[4.] Bradford, K.J., 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort Science, 21: 1105-1112.

[5.] Bose, B. and T. Mishra, 1992. Response of wheat seed to pre-sowing seed treatments with Mg (NO3). Annals of Agricultural Research, 13: 132-136.

[6.] Chen, K. and R. Arora, 2011. Dynamics of antioxidant system during seed osmopriming, post-priming germination and seedling establishment in Spinach (Spinacia oleracea Spinacia oleracea

plant in the family Chenopodiaceae; can cause soluble oxalate poisoning comprising nephrosis, urolithiasis. Called also spinach.
). Plant Science, 180: 212-220.

[7.] Ehsanfar, S., S.A. Modarres-Sanavy and R. Tavakkol-Afshari, 2006. Effects of osmopriming on seed germination of canola (Brassica napus L.) under salinity stress. Communications in agricultural and applied biological sciences, 71(2 ): 155-159.

[8.] Esmaielpour, B., K. Ghassemi-Golezani, F.R. Khoei, V. Gregoorian, and M. Toorchi, 2006. The effect of NaCl priming on cucumber seedling growth under salinity stress. Journal of Food, Agriculture and Environment, 4(2): 347349.

[9.] Farooq, M., S.M.A. Basra, B.A. Saleem, M. Nafees, and S.A. Chishti, 2005. Enhancement of tomato seed germination and seedling vigour by osmopriming. Pakistan Journal of Agricultural Sciences, 42: 36-41.

[10.] Farooq, M., A. Wahid, N. Ahmad and S.A. Asad, 2010. Comparative efficacy of surface drying and re-drying seed priming in rice: changes in emergence, seedling growth and associated metabolic events Paddy Water Environment., 8: 15-22.

[11.] Ghiyasi, M., A. Abbasi Seyahjani, M. Tajbakhsh, R. Amirnia and H. Salehzadeh, 2008. Effect of osmopriming with Polyethylene Glycol polyethylene glycol (PEG): see glycol.  (8000) on germination and seedling growth of wheat (Triticum aestivum L.) seeds under salt stress. Research Journal of Biological Sciences, 3(10): 1249-1251.

[12.] Iqbal, M. and M. Ashraf, 2005. Pre-sowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. Journal of Integrative Plant Biology, 47: 1315-1325.

[13.] ISTA, 1993. International rules of seed testing. Seed Science and Technology, 21: 160-186.

[14.] khan, H.A., C.M. Ayub, M.A. Pervez, R.M. Bilal, M.A. Shahid Shahid or Shaheed is a male given name common among Muslims. It is the Arabic word for witness or martyr. People with this name
Famous people with this name include: See also
  • Shaheed (disambiguation page)
  • All pages beginning with Shaheed
 and K. Ziaf, 2009. Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil & Environment., 28(1): 81-87.

[15.] Maraghani, M., M. Gorai and M. Neffati, 2010. Seed germination at different temperature and water stress levels, and seedling emergence from different depth of Ziziphus lotus. South African Journal of Botany, 76: 453-459.

[16.] Mohammadi, G.R., 2009. The influence of NaCl priming on seed germination and seedling growth of Canola (Brassica napus L.) under salinity conditions. American-Eurasian Journal of Agricultural & Environmental Science, 5(5): 696-700.

[17.] Neamatollahi, E., M. Bannayan, A. Souhani Darban and A. Ghanbari, 2009. Hydropriming and osmopriming effects on cumin (Cuminum Cyminum L.) seeds germination. World Academy of Science, Engineering and Technology, 57: 526-529.

[18.] Saeid, A.S., J. Gebaur and A. Buerkert, 2008. Effect of different scarification scarification /scar·i·fi·ca·tion/ (skar?i-fi-ka´shun) production in the skin of many small superficial scratches or punctures, as for introduction of vaccine.

 method on germination of Ziziphus Spina-christi. Seed Science and Technology, 36: 201-205.

[19.] Sadeghi, H., F. Khazaie, L. Yari and S. Heidaei, 2011. Effect of seed osmopriming on seed germination behavior and vigor of soybean soybean, soya bean, or soy pea, leguminous plant (Glycine max, G. soja, or Soja max) of the family Leguminosae (pulse family), native to tropical and warm temperate regions of Asia, where it has been  (Glycine max Glycine max,
n See soy.

Glycine max

see soybean.
 L.). ARPN Journal of Agricultural and Biological Science, 6: 39-43.

[20.] Sivritepe, N., H.O. Sivritepe and A. Eris, 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturaea, 97: 229-237.

[21.] Sudhersan, C. and J. Hussain, 2003. In vitro propagation of a multipurpose tree, Ziziphus Spina-christi (L) Desf. Turkish Journal of Botany, 27: 167-171.

S. Takhti and A. Shekafandeh

Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran.

Corresponding Author

A. Shekafandeh, Department of Horticulture College of Agriculture Shiraz University Shiraz, Iran. Tel: 0098(711)6138298; Fax: 0098(711)2286133

Table 1: The Effect of different seed priming on the numbers of leaf
and spin

T10      T9        T8         T7         T6         T5         T4

3.04ab   4.19a     2.09ab     3.61ab     2.42ab     2.23ab     1.99ab
3.14ab   4.76a     2.61ab     3.0ab      2.48ab     2.48ab     1.48ab

T10      T3        T2         T1         Cont.      Organ

3.04ab   0.09b     0.42b     ([dagger])  0b         leaf
3.14ab   0.0b      0.51b      3.08ab     0b         Spin

([dagger]) In each row the means with the same letters are nor
significantly different at 5% of probability using Tukey's test.
Cont. = control T1 = distilled water (D.W.); T2 = D.W. at 40[degrees]C;
T3 = NaCl 4dS/m; T4 = NaCl 8dS/m; T5 = NaCl 12dS/m; T6 = NaCl 16dS/m;
T7 = ZnS[O.sub.4] 4dS/m; T8 = ZnS[O.sub.4] 8dS/m; T9 = ZnS[O.sub.4]
12dS/m and T10 = ZnS[O.sub.4] 16dS/m

Fig. 1: Effect of different priming on germination %. cont. = control;
T1 = distilled water (D.W.); T2 = D.W. at 40[degrees]C; T3 = NaCl
4dS/m; T4 = NaCl 8dS/m; T5 = NaCl 12dS/m; T6 = NaCl 16dS/m;
T7 = ZnS[O.sub.4] 4dS/m; T8 = ZnS[O.sub.4] 8dS/m; T9 = ZnS[O.sub.4]
12dS/m and T10 = ZnS[O.sub.4] 16dS/m

Germination (%)

        cont.   T1      T2      T3     T4      T5      T6      T7

G(%)    0       16.44   17.77   12     11.11   15.22   12.33   14.88

        T8      T9      T10

G(%)    18.11   13.44   8.88

Columns with the same letters are not different at 5% probability
using Tusky test.

Fig. 2: Effects of different seed priming on stem and root length of
seedlings. cont. = control; T1 = distilled water (D.W.); T2 = D.W. at
40[degrees]C; T3 = NaCl 4dS/m; T4 = NaCl 8dS/m; T5 = NaCl 12dS/m;
T6 = NaCl 16dS/m; T7 = ZnS[O.sub.4] 4dS/m; T8 = ZnS[O.sub.4] 8dS/m;
T9 = ZnS[O.sub.4] 12dS/m and T10 = ZnS[O.sub.4] 16dS/m

Cm            cont.   T1      T2      T3      T4      T5      T6

Stem Length   0       6.5     6.4     6.35    5.65    5.5     6.15

              T7      T8      T9      T10

Stem Length   6.55    7.6     C.4     7.1

Cm            cont.   T1      T2      T3      T4      T5      T6

Root length   0       7.4 5   7       4.45    4.95    5       4

              T7      T8      T9      T10

Root length   5.05    7.2     5.1     4.8

Columns with the same letters are not different at 5% probability
using Tusky test.

Fig. 3: Effect of seed priming on stem fresh weight (F.W.) and dry
weight (D.W.) of seedling. Mg/g. cont. = control; T1 = distilled water
(D.W.); T2 = D.W. at 40[degrees]C; T3 = NaCl 4dS/m; T4 = NaCl 8dS/m;
T5 = NaCl 12dS/m; T6 = NaCl 16dS/m; T7 = ZnS[O.sub.4] 4dS/m;
T8 = ZnS[O.sub.4] 8dS/m; T9 = ZnS[O.sub.4] 12dS/m and T10 =
ZnS[O.sub.4] 16dS/m

Cm          cont.   T1      T2      T3      T4      T5      T6

Stem F.W.   0       202,9   205.3   161.3   157     175.7   177.3

            T7      T8      T9      T10

Stem F.W.   185,1   252.1   218     203.6

            cont.   T1      T2      T3      T4      T5      T6

Stem D.W.   0       21.25   22.05   23.2    23,75   23.65   22,8

            T7      T8      T9      T10

Stem D.W.   20.65   25.7    20.75   22.3

Columns with the same letters are not different at 5% probability
using Tusky test.

Fig. 4: Effect of different seed priming on root fresh weight and dry
weight of seedling. Mg/g cont. = control T1 = distilled water (D.W.);
T2 = D.W. at 40[degrees]C; T3 = NaCl 4dS/m; T4 = NaCl 8dS/m;
T5 = NaCl 12dS/m; T6 = NaCl 16dS/m; T7 = ZnS[O.sub.4] 4dS/m;
T8 = ZnS[O.sub.4] 8dS/m; T9 = ZnS[O.sub.4] 12dS/m and
T10 = ZnS[O.sub.4] 16dS/m

              cent.   T1      T2      T3      T4      T5      T6

Root F. W.    0       52.01   64.85   25.7    30.9    43.75   50.25

              T7      T8      T9      T10

Root F. W.    47.4    03.75   21.0    41.75

              cont    T1      T2      T3      T4      T5      T6

Root D.W.     0       6.75    4.8     5.B5    5.35    4.7     4.7

              T7      T8      T9      T10

Root D.W.     4.75    5.9     4.35    4.95

Columns with the same letters are not different at 5% probability
using Tusky test.
COPYRIGHT 2012 American-Eurasian Network for Scientific Information
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2012 Gale, Cengage Learning. All rights reserved.

 Reader Opinion




Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:Original Article
Author:Takhti, S.; Shekafandeh, A.
Publication:Advances in Environmental Biology
Article Type:Report
Geographic Code:7IRAN
Date:Jan 1, 2012
Previous Article:Pharmacological properties of herbal oil extracts used in Iranian traditional medicine.
Next Article:Pharmacological review of medicinal trees spontaneous in Iran: a historical and modern study.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters