Printer Friendly

Composicao e riqueza de especies de protozoarios flagelados de ambientes associados ao rio Baia (Mato Grosso do Sul, Brasil): influencia do periodo hidrologico e da conectividade.

Composition and species richness of flagellate protozoa from environments associated to the Baia river (Mato Grosso do Sul State, Brazil): influence of the hydrological period and the connectivity

Introduction

The hydrological regime is considered the driving force both for the ecological functioning and for the maintenance of biodiversity patterns in floodplains, since the periodical oscillations of the water flow induce deep changes in the structure and dynamic of the biota (NEIFF, 1990; JUNK et al., 1989).

Among the aquatic communities in floodplains, flagellate protozoa play important role in the energy flow and nutrient cycling (AZAM et al., 1983), because they transfer to the upper trophic levels the energy obtained through the consumption of bacteria, organic detritus, viruses and pico and nanoplanktonic algae (XU et al., 2005) and, contribute significantly for the primary production in the ecosystems (SAFI; HALL, 1997).

Although it is unquestionable the importance of this community to aquatic ecosystems, studies about are still scarce. Only the autotrophic and mixotrophic fractions have received a little more attention in studies on phytoplankton. Thus, holistic studies incorporating all the fractions are almost nonexistent, especially in floodplains. Consequently, the effect of the flood regime and the hydrological connectivity on the composition and species richness of flagellate protozoa is not known.

Furthermore, few studies have investigated the species composition of flagellate protozoa and most of them did not examine all the fractions of this community (AUER; ARNDT, 2001; COMTE et al., 2006; DOMAIZON et al., 2003; KISS et al., 2009; LAVRENTYEV et al., 2004; TIKHONENKOV, 2007; TIKHONENKOV; MAZEI, 2006, 2008; WEITERE; ARNDT, 2003). In the same way, there are no records of studies specifically approaching the species richness patterns of these organisms. In Brazil, the studies on this community are still scarce (ARAUJO; COSTA, 2007; ARAUJO; GODINHO, 2008; PEREIRA et al., 2005) and most of them does not present taxonomical focus and includes the other components of the protozooplankton.

In this way, the present study aimed to accomplish a species faunistic inventory and investigate the influence of the flood regime and hydrological connectivity on the patterns of composition and species richness of flagellate protozoa from six lentic environments associated to the Baia river in the upper Parana river floodplain.

To this end, we predict that the patterns of composition and species richness are different between the environments (with and without connection) and between the periods of the hydrological cycle (high and low water), and we expect that: i) the species composition is more similar between the environments with and without connection during the high water period due to the homogenizing effect of the floods (THOMAZ et al., 2007) and ii) the higher species richness occur in the environments connected to the Baia river during the high water period due to the lotic influence.

Material and methods

The present study was developed in the upper Parana river floodplain that presents high environmental heterogeneity, due to presence of lakes, backwaters, channels and rivers. Among these environments, Baia river (22[degrees]43'23.16"S; 53[degrees]17' 25.5"W) is situated in the right bank of Parana river, in the Mato Grosso do Sul State. It is a meandering river that presents a great number of concatenated lakes along its course. Moreover, due to the low current flow and small slope of its bed, this river is characterized as semilotic (SOUZA FILHO; STEVAUX, 1997).

We accomplished two semestrial samplings in six lakes associated to the Baia system (Figure 1), three without connection to the river (Aurelio, Fechada and Pousada das Garcas) and other three connected to it (Guarana, Maria Luiza and Porcos). The first sampling was performed in March 2008, during the high water period, and the second in September 2008, during the low water period. All the samplings, in replica, were performed in the littoral and pelagic region from each (n = 48), using a plankton net (20 [micro]m) and also through passage of a flask at subsurface.

[FIGURE 1 OMITTED]

The individuals were analyzed in vivo, under optical microscope, to avoid alterations in the cell shape and dimension arisen from the preservation process. The aliquots were obtained using a monochannel micropipette and placed on glass slides, which were examined until no new species arose during this analysis. The individuals were identified, whenever possible, at species level, based on morphological traits and specialized literature. The results were presented according to the classification system developed by Lee et al. (2000).

In order to test the differences in the species richness between the environments (with and without connection with the river) and between the periods (high and low water) we employed a factorial analysis of variance (Two-way ANOVA). The spatial and temporal patterns in the species composition were evaluated using a detrended correspondence analysis (DCA), since according to Gauch (1982), this analysis is the most indicated for group of ecological data because it describes well the distribution of the sampled population. Afterwards, we applied further analyses of variance (Two-way ANOVA) to the scores from each axis to test differences in the species composition between the environments (with and without connection with the river) and periods (high and low water). The assumptions of normality and homoscedasticity were previously tested and the significance level adopted was of p < 0.05.

Results

The community of flagellate protozoa was represented by 120 taxa (Table 1 and Figure 2), belonging to 10 orders and one residual group: Choanoflagellida (1 taxa), Chromulinales (6 taxa), Cryptomonadida (8 taxa), Euglenida (81 taxa), Gymnodiniales (3 taxa), Kinetoplastea (4 taxa), Peridiniales (5 taxa), Synurales (3 taxa), Volvocida (6 taxa) and three residual taxa. Euglenida was the most species-rich order, due to the great contribution of Tracheiomonas (32 taxa), Euglena (14 taxa) and Phacus (12 taxa), respectively. Moreover, other genera from other orders also contributed with high species richness in the studied environments (Table 1).

[FIGURE 2 OMITTED]

The detrended correspondence analysis indicated a clear distinction among the environments and mainly between the periods (Figure 3). This pattern was corroborated by the analysis of variance applied to the DCA scores, which evidenced a significant interaction between the factors for the DCA 1 and significant difference between the connected and isolated environments for the DCA 2 (Table 2).

[FIGURE 3 OMITTED]

The highest species richness were verified in the environments connected to Baia river during the high water period (Figures 4a and b) and these differences were validated by the analysis of variance that evidenced significant differences between the connected and isolated environments (F = 26.915; p < 0.01) and between the hydrological periods (F = 15.561; p < 0.01).

[FIGURE 4 OMITTED]

Discussion

The faunistic inventory revealed that the community of flagellate protozoa in the studied environments is quite rich, probably due to the relevant contribution of Euglenida order, which contributed with 67% from the total of identified species. The individuals from this order, specially the genera Euglena, Phacus and Trachelomonas, which were the most species-rich in the present study, are commonly found in aquatic environments with high biochemical demand of oxygen, rich in organic matter and ammonia (REYNOLDS et al., 2002). These preferences might have favored the success of these organisms during the high water period due to the great accumulation of allochthonous organic matter (JUNK et al., 1989; LEWIS JR. et al., 2000; NEIFF, 1990).

The second most important order, especially during the low water period, was Cryptomonadida that contributed with 6% from the total of identified species. The success of these organisms in this period may be associated to the opportunistic traits that provide them competitive advantage to tolerate adverse conditions in the low water period (BOVOSCOMPARIN; TRAIN, 2008; JONES, 2000). The other orders contributed far less expressive, i.e. all together contributed with 27% from the total of identified species. These orders were only a little more representative during the low water period, probably because many of these organisms (especially the orders Peridiniales, Gymnodiniales and Chromulinales) present adaptations that permit them to tolerate the unfavorable conditions (JONES, 2000; REYNOLDS et al., 2002).

The pattern of species composition recorded in the present study is quite different from those found by other authors in several temperate rivers and lakes (AUER; ARNDT, 2001; COMTE et al., 2006; DOMAIZON et al., 2003; KISS et al., 2009; LAVRENTYEV et al., 2004; TIKHONENKOV, 2007; TIKHONENKOV; MAZEI, 2006, 2008; WEITERE; ARNDT, 2003). The predominance of

Chrysomonadida is frequently observed in these environments and in general Spumella spp. is the most common species. Similar result to the registered in the present study was verified by Araujo and Costa (2007) that observed a great contribution of Euglenida order for the species richness in reservoirs from Brazilian semiarid region due to the enrichment of the environments by organic matter.

The species composition may be a useful tool to understand the functional processes from an ecosystem since it reflects the environmental characteristics, as observed in the present study. Nevertheless, the first hypothesis of this study cannot be totally accepted, since despite the influence of the flood regime and hydrological connectivity, the species composition from the environments associated and isolated from the Baia river was not similar during the high water period, as previously predicted. This probably occurred because the local factors (such as morphometry, wind action, rainfall etc) were more important than the regional ones.

On the other hand, the patterns of species richness corresponded to the expected, with higher values in the environments connected to the Baia river during the high water period, thus, corroborating our second hypothesis. The greater values of species richness during the high water period may be related to the increase in the connectivity that promotes the exchange of water, sediment, nutrients and organisms between the different habitats (BONECKER et al., 2005; NEIFF et al., 2001; WARD; STANFORD, 1995). Also, to the contribution of periphytic community, since in shallow environments, as wetlands, the increase in the water flow may cause the detachment of periphytic organisms, and then preventing the establishment of limits among the populations from the different compartments of the aquatic ecosystem.

Otherwise, the lower values of richness in the low water period are associated to the absence of lotic activity and to the action of local factors that may limit the flagellate development during this period, such as reduced depth, high turbidity, resuspension of sediment, which cause changes in the biotic interactions (CARVALHO et al., 2001; LEWIS JR. et al., 2000).

In summary, the flood regime and the hydrological connectivity influenced the patterns of composition and species richness of flagellate protozoa as already observed in other planktonic communities from the upper Parana river floodplain (ALVES et al., 2005; AOYAGUI; BONECKER, 2004; BINI et al., 2003; DOMITROVIC, 2002). However the non corroboration of the homogenizing effect of the floods on the species composition during the high water period may be associated to the temporal scale of the sampling, which was quite limited, since this theory is widely proved with other communities. Therefore it is necessary to accomplish further studies with a longer temporal scale for a better understanding of the processes that regulate the structure and dynamic of this community. In the same way, it is necessary to perform holistic researches evaluating integrally the composition, species richness, abundance and biomass of this community in these systems.

DOI: 10.4025/actascibiolsci.v32i4.6307

Received on February 29, 2009.

Accepted on August 6, 2009.

References

ALVES, G. M.; VELHO, L. F. M.; LANSAC-TOHA, F. A.; ROBERTSON, B. A.; BONECKER, C. C. Effect of the connectivity on the diversity and abundance of cladoceran assemblages in lagoons of the upper Parana river floodplain. Acta Limnologica Brasiliensis, v. 17, n. 3, p. 317-327, 2005.

AOYAGUI, A. S. M.; BONECKER, C. C. Rotifers in different environments of the upper Parana river floodplain (Brazil): richness, abundance and the relationship with connectivity. Hydrobiologia, v. 522, n. 1-3, p. 281-290, 2004.

ARAUJO, M. F. F.; COSTA, I. A. S. Comunidades microbianas (bacterioplancton e protozooplancton) em reservatorios do semi-arido brasileiro. Oecologia Brasilensis, v. 11, n. 3, p. 422-432, 2007.

ARAUJO, M. F. F.; GODINHO, M. J. L. Spatial and seasonal variations of planktonic protists (Mastigophora, Sarcodina and Ciliophora) in a river-lacustrine system in northeast Brazil. Acta Limnologica Brasiliensia, v. 20, n. 3, p. 235-244, 2008.

AUER, B.; ARNDT, H. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwater Biology, v. 46, n. 7, p. 959-972, 2001.

AZAM, F.; FENCHEL, T.; FIELD, J. G.; GRAY, J. S.; MEYER-REIL, L. A.; THINGSTAD, F. The ecological role of water column microbes in the sea. Marine Ecology Progress Series, v. 10, n. 33, p. 257-263, 1983.

BINI, L. M.; VELHO, L. F. M.; LANSAC-TOHA, F. A. The effect of connectivity on the relationship between local and regional species richness of testate amoebae (Protozoa, Rhizopoda) in floodplain lagoons of the upper Parana river, Brazil. Acta Oecologica-International Journal of Ecology, v. 24, n. 1, p. 145-151, 2003.

BONECKER, C. C.; DA COSTA, C. L.; VELHO, L. F. M.; LANSAC-TOHA, F. A. Diversity and abundance of the planktonic rotifers in different environments of the upper Parana river floodplain (Parana State--Mato Grosso do Sul State, Brazil). Hydrobiologia, v. 546, n. 1, p. 405-414, 2005.

BOVO-SCOMPARIN, V. M.; TRAIN, S. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema river State Park, Brazil. Hydrobiologia, v. 610, n. 1, p. 331-344, 2008.

CARVALHO, P.; BINI, L. M.; THOMAZ, S. M.; OLIVEIRA, L.; ROBERTSON, G. B.; TAVECHIO, W. L. G.; DARWISCH, A. J. Comparative limnology of South-American lakes and lagoons. Acta Scientiarum. Biological Sciences, v. 23, n. 2, p. 265-273, 2001.

COMTE, J.; VIBOUD, S.; FONTVIELLE, D.; MILLERY, A.; PAOLINI, G.; DOMAIZON, I. Microbial community structure and dynamics in Largest Natural French Lake (Lake Bourget). Microbial Ecology, v. 52, n. 1, p. 72-89, 2006.

DOMAIZON, I.; VIBOUD, S.; FONTVIEILLE, D. Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy--importance of mixotrophy. Microbial Ecology, v. 46, n. 3, p. 317-329, 2003.

DOMITROVIC, Y. Z. Structure and variation of the Paraguay river phytoplankton in two periods of its hydrological cycle. Hydrobiologia, v. 472, n. 1-3, p. 177-196, 2002.

GAUCH, H. G. Multivariate analysis in community ecology. New York: Cambridge University Press, 1982. JONES, R. I. Mixotrophy in planktonic protists: An overview. Freshwater Biology, v. 45, n. 2, p. 219-226, 2000.

JUNK, W. J.; BAYLEY, P. B.; SPARKS, R. E. The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences, n. 106, p. 110-127, 1989.

KISS, A. K.; ACS, E.; KISS, K. T.; TOROK, J. K. Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (river Danube, Hungary). European Journal of Protistology, v. 45, n. 2, p. 121-138, 2009.

LAVRENTYEV, P. J.; MCCARTHY, M. J.; KLARER, D. M.; JOCHEM, F.; GARDNER, W. S. Estuarine microbial food web patterns in a lake Erie Coastal wetland.

Microbial Ecology, v. 48, n. 4, p. 567-577, 2004. LEE, J. J., LEEDALE, G. F.; BRADBURY, P. Illustrated guide to the Protozoa. 2nd Edition. Kansas, Society of Protozoologists, 2000.

LEWIS JR., W. M., HAMILTON, S. K.; LASI, M. A.; RODRIGUEZ, M.; SAUNDERS, J. F. III. Ecological determinism on the Orinoco floodplain. BioScience, v. 50, n. 8, p. 681-692, 2000.

NEIFF, J. J. Ideas para la interpretacion ecologica del Parana. Interciencia, v. 6, n. 15, p. 424-441, 1990.

NEIFF, J. J.; POI DE NEIFF, A. S. G.; CASCO, S. The effect of prolonged floods on Eichhornia crassipes growth in Parana River floodplain lakes. Acta Limnologica Brasiliensis, v. 13, n. 1, p. 51-60, 2001.

PEREIRA, D. G.; VELHO, L. F. M.; PAGIORO, T. A.; LANSAC-TOHA, F. A. Abundancia de nanoflagelados heterotroficos no plancton de reservatorios com distintos graus de trofia. Acta Scientiarum Biological Sciences, v. 27, n. 1, p.43-50, 2005.

REYNOLDS, C. S.; HUSZAR, V.; KRUK, C.; NASELLI-FLORES, L.; MELO, S. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, v. 24, n. 5, p. 417-428, 2002.

SAFI, K. A.; HALL, J. A. Factors influencing autotrophic and heterotrophic nanoflagellate abundance in five water masses surrouding New Zealand. Journal of Marine and Freshwater Research, v. 31, n. 1, p. 51-60, 1997.

SOUZA FILHO, E. E.; STEVAUX, J. C. Geologia e geomorfologia do complexo rio Baia, Curutuba, Ivinheima. In: VAZZOLER, A. E. A. M.; AGOSTINHO, A. A.; HAHN, N. S. (Ed.). A planicie de inundacao do alto rio Parana: aspectos fisicos, biologicos e socioeconomincos. Maringa: Eduem, 1997. p. 3-46.

TIKHONENKOV, D. V. Species diversity of heterotrophic flagellates in Rdeisky reserve wetlands. Protistology, v. 5, n. 2/3, p. 213-230, 2007.

TIKHONENKOV, D. V.; MAZEI, Y. A. Distribuition of heterotrophic flagellates at the litoral Estuary of Chernaya river (Kandalaksha Bay, White Sea). Russian Journal of Marine Biology, v. 32, n. 5, p. 276-283, 2006.

TIKHONENKOV, D. V.; MAZEI, Y. A. Heterotrophic flagellate biodiversity and community structure in freshwater streams. Inland Water Biology, v. 1, n. 2, p. 129-133, 2008.

THOMAZ, S. M.; BINI, L. M.; BOZELLI, R. L. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, v. 579, n. 1, p. 1-13, 2007.

XU, M.; CAO, H.; XIE, P.; DENG, D.; FENG, W.; XU, J. The temporal and spatial distribution, composition and abundance of Protozoa in Chaohu Lake, China: Relationship with eutrophication. European Journal of Protistology, v. 41, n. 3, p. 183-192, 2005.

WARD, J. V.; STANFORD, J. A. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated rivers: Research and Management, v. 11, n. 1, p. 105-119, 1995.

WEITERE, M.; ARNDT, H. Structure of the heterotrophic flagellate community in water column of the river Rhine (Germany). European Journal of Protistology, v. 39, n. 3, p. 287-300, 2003.

Janielly Carvalho Camargo * and Luiz Felipe Machado Velho

Universidade Estadual de Maringa, Av. Colombo, 5790, 87020-900, Maringa, Parana, Brazil. * Author for correspondence. Email: janiellycamargo@hotmail.com
Table 1. Faunistic inventory of flagellate protozoa community recorded
in six environments (Where: Guar: Guarana; M-Lui: Maria Luiza; Por:
Porcos; Aure: Aurelio; Fech: Fechada; P-Gar: Pousada das Garcas)
associated to Baia river, during the periods of high water
(H) and low water (L), in the upper Parana river floodplain.

Connectivity                                            Connected

Environments                                 Guar      M-Lui     Porc

Period                                     H    L    H    L    H    L

Choanoflagellida
Monosiga cf. ovata Kent.                   X    X    -    X    X    -
Chromulinales
Anthophysa vegetans (O.
  F. Muller) Stein.                        X    X    -    -    X    -
Ochromonas sp.                             -    -    -    -    -    -
Oicomonas cf. socialis Moroff.             X    -    X    -    -    -
Spumella sp.                               -    -    -    X    -    -
Uroglena sp.                               -    X    -    -    -    -
Unidentified Chromulinales.                -    X    -    -    -    X
Cryptomonadida
Cyatomonas sp?                             -    -    -    -    -    -
Chilomonas sp.                             -    -    -    -    -    -
Chroomonas cf. acuta Uterm.                X    X    X    X    X    X
Cryptomonas cf. curvata Ehr.
  emend. Pen.                              X    -    X    -    X    -
Cryptomonas cf. marssonii Skuja            X    X    X    X    X    X
Cryptomonas sp.                            X    X    -    X    X    X
Protochrysis sp?                           -    -    -    -    -    X
Colorless unidentified Cryptomonadida.     -    -    -    X    -    -
Euglenida
Anisonema acinus Duj.                      -    X    -    -    -    -
Anisonema sp.                              X    -    -    -    -    -
Astasia sp.                                -    -    -    -    -    X
Colacium vesiculosum f. arbuscula
  (Stein) Hub. Pest.                       -    -    -    -    -    -
Cryptoglena sp.                            -    -    -    -    X    -
Entosiphonsulcatum (Duj.) Stein            X    -    -    -    -    -
Euglena acus var. acus Ehr.                X    X    -    -    -    -
E. caudata Hubn.                           X    -    -    -    X    -
E. clavata Skuja                           X    -    -    -    X    -
E. ehrenbergii Kleb.                       -    -    -    -    -    -
E. limnophila Lemm. var.
  limnophila (Sec. Seckt)                  -    -    -    -    -    -
E. minuta Prescott                         -    -    -    X    X    -
E. oxyuris Schm.                           X    X    X    -    X    -
E. polimorpha Dang.                        X    -    -    -    -    -
E. proxima Dang.                           X    X    X    -    X    X
E. splends Dang.                           X    -    -    -    -    -
E. spirogyra Ehr.                          -    X    -    -    X    -
E. viridis Ehr.                            -    -    X    -    X    -
Euglena sp1.                               X    -    -    -    -    -
Euglena sp2.                               -    -    -    X    -    -
Lepocinclis fusiformes (Car.)
  Lemm. Conr.                              X    -    -    -    X    -
L. ovum (Ehr.) Lemm.                       X    X    -    X    X    X
L. texta (Duj.) Lemm.                      X    -    X    -    X    -
Menoidium sp.                              X    -    -    -    -    -
Notosolenus cf. canellatus Skuja           X    -    X    -    X    -
Peranema trichophorum (Ehr.) Stein.        X    -    -    -    X    -
Petalomonas sp.                            -    -    -    -    -    -
Phacus contortus Bourr.                    X    -    -    -    -    -
P. curvicauda Swirenko                     -    X    -    X    -    X
P. horridus Pochm.                         X    -    -    -    X    -
P. longicauda (Ehr.) Duj.                  X    X    -    -    X    -
P. melagopsis Pochm.                       -    X    -    -    -    -
P. orbicularis Hubn.                       X    X    X    X    X    -
P. pleuronectes (Mull.) Duj.               X    -    X    -    X    -
P. pseudonordstedtii Pochm.                X    -    -    -    -    -
P. pusillus Lemm.                          -    -    -    -    -    -
P. similis Christen                        -    X    -    -    -    -
P. tortus (Lemm.) Skv.                     -    -    -    -    -    -
Phacus sp.                                 X    -    -    -    X    -
Ploetia sp.                                X    -    X    -    -    -
Sphenomonas sp.                            X    -    -    -    -    -
Strombomonas acuminata (Schm.) Deft.       -    -    -    -    X    -
S. gibberosa (Playf.) Defl.                X    -    X    -    X    -
S. fluviatilis (Lemm.) Defl.               X    -    -    -    -    -
S. schawinslandii (Lemm.) Defl.            -    -    X    -    -    -
S. tetraptera Balech. et Dast              X    -    -    -    -    -
Strombomonas sp.                           -    X    X    -    -    -
Trachelomonas acanthophora
  Stokes var. acanthophora                 X    -    -    -    -    -
T. acanthophora Stokes var.
  speciosa (Defl.) Balech.                 -    -    -    -    -    -
T. armata var. armata (Ehr.) Stein         X    -    X    -    X    -
T. armata var. litoralensis
  Tell et Zaloc.                           -    -    -    -    X    -
T. armata (Ehr.) Stein var.
  longispina (Playf.) Defl.                -    -    -    -    -    -
T. bacillifera Playf.                      -    X    -    -    -    -
T. bernardii Wol.                          X    -    X    -    -    -
T. caudata (Ehr.) Stein                    X    -    -    -    -    -
T. cylindrica Playf.                       X    -    X    -    X    -
T. gracillima Balech. et Dast.             -    -    -    -    -    -
T. hispida (Perty) Stein emend.
  Defl. var. hispida                       X    X    X    -    X    -
T.hispida var. coronata Lemm.              X    -    -    -    -    -
T. hispida var. crenulatocollis
  (Defl.)Tell et Conf.                     X    -    -    -    -    -
T. hispida var. multispinosa
  (Tracanna) Tell et Conf.                 -    -    X    -    -    -
T. lacustris Drez.                         X    -    -    -    -    -
T. lemmermannii Wolosz. emend Defl.        -    -    -    -    -    -
T. magdaleniana Defl.                      X    -    -    -    -    -
T. megalacantha var. heterocantha
  Tell et Zaloc.                           -    -    -    -    -    -
T. oblonga Lemm.                           -    X    -    X    -    X
T. pseudobulla Swir.                       X    -    X    -    X    -
T. pulchra Swir.                           X    X    -    -    -    -
T. raciborskii Wolosz.                     X    -    X    -    -    -
T. rugulosa Stein emend. Defl.             -    -    X    -    X    -
T. sculpta Balech.                         -    -    -    -    -    -
T. sydneyensis Playf.                      -    -    -    -    -    -
T. similis var. spinosa Hub. Pest.         -    -    X    -    X    X
T. superba Tell                            X    -    X    -    X    -
T. verrucosa Defl.                         -    -    -    -    -    -
T. volvocina Ehr.                          X    X    X    -    X    -
T. volvocinopsis Swir.                     X    X    X    X    X    X
T. woycickii Koczw.                        X    -    -    -    -    -
Trachelomonas sp.                          -    -    X    -    -    -
Unidentified Euglenida 1.                  -    -    X    X    X    -
Unidentified Euglenida 2.                  -    -    X    -    -    -
Gymnodiniales
Gymnodinium cf. caudatum Prescott          -    -    -    -    -    X
Gymnodinium cf. fuscum (Ehr.) Stein        X    X    -    X    -    X
Katodinium sp?                             -    -    -    -    -    X
Kinetoplastea
Bodo caudatus (Duj.) Stein                 X    -    X    -    -    -
B. globosus Stein                          X    -    -    -    -    -
Bodo sp.                                   -    X    -    X    -    X
Rhynchomonas sp.                           -    -    X    -    -    -
Peridiniales
Peridinium cf. cinctum (Muell.) Ehr.       X    X    X    -    X    -
P. cf. wisconsinense Eddy                  X    X    -    X    X    X
Peridinium sp1.                            X    X    -    -    -    X
Peridinium sp2.                            -    -    X    X    -    -
Unidentified Dinoflagellata.               -    -    -    X    -    X
Residual
Cladonema cf. pauperum Pasch.              X    -    X    -    X    -
Polytomella sp.                            -    X    -    X    -    -
Rhipidodendron splendidum Stein            -    X    -    -    X    X
Synurales
Mallomonas sp1.                            -    X    X    X    X    X
Mallomonas sp2.                            -    X    -    -    -    X
Synura sp.                                 -    X    -    -    -    -
Volvocida
Chlamydomonas sp.                          X    -    -    -    -    -
Eudorina elegans Ehr.                      -    X    -    X    X    X
Pandorina morum (O. F. Muller) Bory        -    -    -    -    -    -
Sphaerocystis sp.                          -    -    -    -    -    -
Volvox aureus Ehr.                         -    -    X    -    -    -
Unidentified Chlamydomonadidae.            -    X    -    X    -    -
Total                                      60   37   38   23   43   23

Connectivity                                            Isolated

Environments                                 Aure      Fech      P-Gar

Period                                     H    L    H    L    H    L

Choanoflagellida
Monosiga cf. ovata Kent.                   X    -    -    X    -    -
Chromulinales
Anthophysa vegetans (O.
  F. Muller) Stein.                        -    -    -    X    -    -
Ochromonas sp.                             X    X    -    -    -    -
Oicomonas cf. socialis Moroff.             X    -    X    X    -    -
Spumella sp.                               -    -    -    -    -    -
Uroglena sp.                               -    -    -    -    -    -
Unidentified Chromulinales.                -    -    -    -    -    -
Cryptomonadida
Cyatomonas sp?                             -    X    -    -    -    -
Chilomonas sp.                             -    -    -    -    X    -
Chroomonas cf. acuta Uterm.                -    X    -    X    X    X
Cryptomonas cf. curvata Ehr.
  emend. Pen.                              -    -    -    -    -    -
Cryptomonas cf. marssonii Skuja            -    X    -    X    -    -
Cryptomonas sp.                            X    X    -    -    X    X
Protochrysis sp?                           -    X    -    -    -    -
Colorless unidentified Cryptomonadida.     -    X    -    X    -    -
Euglenida
Anisonema acinus Duj.                      -    -    -    -    -    -
Anisonema sp.                              -    -    -    -    X    -
Astasia sp.                                -    -    -    -    -    -
Colacium vesiculosum f. arbuscula
  (Stein) Hub. Pest.                       -    -    -    -    X    -
Cryptoglena sp.                            -    -    -    -    -    -
Entosiphonsulcatum (Duj.) Stein            -    -    X    -    -    -
Euglena acus var. acus Ehr.                -    -    -    -    -    -
E. caudata Hubn.                           -    -    -    -    -    -
E. clavata Skuja                           -    -    -    -    -    -
E. ehrenbergii Kleb.                       -    -    X    -    -    -
E. limnophila Lemm. var.
  limnophila (Sec. Seckt)                  X    -    X    -    -    -
E. minuta Prescott                         -    -    X    -    X    -
E. oxyuris Schm.                           X    -    -    -    X    -
E. polimorpha Dang.                        -    -    -    -    -    -
E. proxima Dang.                           X    X    -    X    -    -
E. splends Dang.                           -    -    -    -    -    X
E. spirogyra Ehr.                          -    -    -    -    -    -
E. viridis Ehr.                            -    -    X    -    -    -
Euglena sp1.                               -    -    -    X    -    X
Euglena sp2.                               -    -    -    -    -    -
Lepocinclis fusiformes (Car.)
  Lemm. Conr.                              -    -    -    -    -    -
L. ovum (Ehr.) Lemm.                       X    X    -    -    X    -
L. texta (Duj.) Lemm.                      X    -    X    -    X    -
Menoidium sp.                              -    -    -    -    -    -
Notosolenus cf. canellatus Skuja           -    -    -    -    X    -
Peranema trichophorum (Ehr.) Stein.        -    -    -    -    -    -
Petalomonas sp.                            -    -    X    X    -    -
Phacus contortus Bourr.                    -    -    -    -    -
P. curvicauda Swirenko                     -    X    -    X    -    -
P. horridus Pochm.                         X    -    X    -    X    -
P. longicauda (Ehr.) Duj.                  -    -    -    -    X    -
P. melagopsis Pochm.                       -    -    -    -    -    -
P. orbicularis Hubn.                       X    X    -    X    -    -
P. pleuronectes (Mull.) Duj.               X    -    X    -    X    -
P. pseudonordstedtii Pochm.                -    -    -    -    -    -
P. pusillus Lemm.                          -    -    X    -    X    -
P. similis Christen                        -    -    -    -    -    -
P. tortus (Lemm.) Skv.                     X    -    X    -    -    -
Phacus sp.                                 -    -    -    -    -    -
Ploetia sp.                                X    -    -    -    -    -
Sphenomonas sp.                            -    -    -    X    -    -
Strombomonas acuminata (Schm.) Deft.       -    -    -    -    -    -
S. gibberosa (Playf.) Defl.                -    X    X    -    X    -
S. fluviatilis (Lemm.) Defl.               -    -    -    -    -    -
S. schawinslandii (Lemm.) Defl.            -    -    -    -    -    -
S. tetraptera Balech. et Dast              -    -    -    -    -    -
Strombomonas sp.                           -    -    -    -    -    -
Trachelomonas acanthophora
  Stokes var. acanthophora                 X    -    -    -    -    -
T. acanthophora Stokes var.
  speciosa (Defl.) Balech.                 X    -    -    -    -    -
T. armata var. armata (Ehr.) Stein         X    -    X    -    X    -
T. armata var. litoralensis
  Tell et Zaloc.                           -    -    -    -    -    -
T. armata (Ehr.) Stein var.
  longispina (Playf.) Defl.                -    -    -    -    X    -
T. bacillifera Playf.                      -    -    -    -    -    -
T. bernardii Wol.                          X    -    X    -    -    -
T. caudata (Ehr.) Stein                    -    -    -    -    -    -
T. cylindrica Playf.                       -    -    -    -    -    -
T. gracillima Balech. et Dast.             X    -    -    -    -    -
T. hispida (Perty) Stein emend.
  Defl. var. hispida                       X    X    X    X    X    -
T.hispida var. coronata Lemm.              -    -    -    -    -    -
T. hispida var. crenulatocollis
  (Defl.)Tell et Conf.                     -    -    -    -    -    -
T. hispida var. multispinosa
  (Tracanna) Tell et Conf.                 X    -    X    -    X    -
T. lacustris Drez.                         -    -    -    -    X    -
T. lemmermannii Wolosz. emend Defl.        X    -    -    -    -    -
T. magdaleniana Defl.                      -    -    -    -    -    -
T. megalacantha var. heterocantha
  Tell et Zaloc.                           X    -    -    -    -    -
T. oblonga Lemm.                           X    X    -    X    -    X
T. pseudobulla Swir.                       X    -    X    -    X    -
T. pulchra Swir.                           X    -    -    -    -    -
T. raciborskii Wolosz.                     -    -    -    -    -    -
T. rugulosa Stein emend. Defl.             X    -    -    -    -    -
T. sculpta Balech.                         X    -    -    -    -    -
T. sydneyensis Playf.                      X    -    -    -    X    -
T. similis var. spinosa Hub. Pest.         X    -    X    -    X    -
T. superba Tell                            -    -    -    -    -    -
T. verrucosa Defl.                         -    -    X    -    -    -
T. volvocina Ehr.                          -    -    -    X    -    -
T. volvocinopsis Swir.                     X    X    -    X    X    -
T. woycickii Koczw.                        -    -    -    -    -    -
Trachelomonas sp.                          -    -    -    -    -    -
Unidentified Euglenida 1.                  -    -    -    -    -    X
Unidentified Euglenida 2.                  -    -    -    -    -    -
Gymnodiniales
Gymnodinium cf. caudatum Prescott          -    X    -    X    -    -
Gymnodinium cf. fuscum (Ehr.) Stein        -    -    -    X    X    X
Katodinium sp?                             -    -    -    X    -    X
Kinetoplastea
Bodo caudatus (Duj.) Stein                 X    -    X    -    X    -
B. globosus Stein                          -    -    -    -    X    -
Bodo sp.                                   X    -    -    X    -    -
Rhynchomonas sp.                           X    -    -    -    -    -
Peridiniales
Peridinium cf. cinctum (Muell.) Ehr.       X    -    -    X    X    -
P. cf. wisconsinense Eddy                  -    X    -    X    -    -
Peridinium sp1.                            -    -    -    -    X    -
Peridinium sp2.                            -    -    X    -    -    X
Unidentified Dinoflagellata.               -    -    -    -    -    -
Residual
Cladonema cf. pauperum Pasch.              X    -    -    -    -    -
Polytomella sp.                            -    -    -    -    -    -
Rhipidodendron splendidum Stein            X    X    X    X    -    -
Synurales
Mallomonas sp1.                            X    X    X    X    -    X
Mallomonas sp2.                            -    -    -    -    -    -
Synura sp.                                 X    X    X    -    -    -
Volvocida
Chlamydomonas sp.                          -    -    -    -    -    -
Eudorina elegans Ehr.                      X    X    -    -    -    X
Pandorina morum (O. F. Muller) Bory        -    X    -    -    -    -
Sphaerocystis sp.                          -    X    -    -    -    -
Volvox aureus Ehr.                         X    -    -    -    -    -
Unidentified Chlamydomonadidae.            -    -    -    -    -    -
Total                                      42   23   25   24   29   11

Table 2. Eigenvalue of the axis 1 and 2 from DCA and results
from the analyses of variance (Two-way Anova) applied to the
scores from each axis. *Significant values (p < 0.05).

Effect/Eigenvalues                               DCA 1

                                      D.F.     F         p

Connectivity (Connected x Isolated)    1      1.91     0.174
Period (High water x Low water)        1     430.74   0.000 *
Connectivity * Period                  1     10.69    0.002 *
Eigenvalue                                    0.48

                                                DCA 2

                                      D.F.     F         p

Connectivity (Connected x Isolated)    1      8.82    0.005 *
Period (High water x Low water)        1      1.21     0.277
Connectivity * Period                  1      2.86     0.098
Eigenvalue                                    0.24
COPYRIGHT 2010 Universidade Estadual de Maringa
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2010 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:texto en ingles
Author:Carvalho Camargo, Janielly; Machado Velho, Luiz Felipe
Publication:Acta Scientiarum Biological Sciences (UEM)
Date:Oct 1, 2010
Words:4434
Previous Article:Avaliacao de uma chave de identificacao simplificada para Staphylococcus coagulase-positivos isolados de mastite bovina.
Next Article:Caracterizacao citogenetica e molecular de exemplares de Speothos venaticus.
Topics:

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters