Printer Friendly
The Free Library
23,403,340 articles and books


Chapter 18 lapping and honing.

18.1 Introduction

Lapping is a final abrasive finishing operation that produces extreme dimensional accuracy, corrects minor imperfections of shape, refines surface finish and produces close fit between mating surfaces. Most lapping is done with a tooling plate or wheel (the lap) and fine-grained loose abrasive particles suspended in a viscous or liquid vehicle such as soluble oil, mineral oil or grease. A typical lapping operation is shown below.

Honing is a low-velocity abrading process. Material removal is accomplished at lower cutting speeds than in grinding. Therefore, heat and pressure are minimized, resulting in excellent size and geometry control. The most common application of honing is on internal cylindrical surfaces. The cutting action is obtained using abrasive sticks mounted on a metal mandrel. Since the work is fixed in such a way as to allow floating, without clamping or chucking, there is no distortion.

18.2 Lapping Processes

The principal use of the lapping process is to obtain surfaces that are truly flat and smooth. Lapping is also used to finish round work, such as precision plug gages, to tolerances of 0.0005" to 0.00002".

Work that is to be lapped should be previously finished close to the final size. While rough lapping can remove considerable metal, it is customary to leave only 0.0005" to 0.005" of stock to be removed.

Lapping, though it is an abrasive process, differs from grinding or honing because it uses a "loose" abrasive instead of bonded abrasives like grinding wheels.

These abrasives are often purchased "ready mixed" in a "vehicle" often made with an oil-soap or grease base. These vehicles hold the abrasive in suspension before and during use. The paste abrasives are generally used in hand-lapping operations. For machine lapping, light oil is mixed with dry abrasive so that it can be pumped onto the lapping surface during the lapping operation.

18.2.1 Lapping Machines

These machines are fairly simple pieces of equipment consisting of a rotating table, called a lapping plate, and three or four conditioning rings. Standard machines have lapping plates from 12" to 48" in diameter. Large machines up to 144" are made. One-to 20-hp motors run these tables.

The lapping plate is most frequently made of high-quality soft cast iron, though some are made of copper or other soft metals. This plate must be kept perfectly flat. The work is held in the conditioning rings. These rings rotate. This rotation performs two jobs. First, it "conditions" the plate--that is, it distributes the wear so that the lapping plate stays flat for a longer time. Second, it holds the workpiece in place. The speed at which the plate turns is determined by the job being done. In doing very critical parts, 10 to 15 rpm is used. When polishing is involved, up to 150 rpm is used.

A pressure of about 3 pounds per square inch (psi) must be applied to the workpieces. Sometimes their own weight is sufficient. If not, a round, heavy pressure plate is placed in the conditioning ring. The larger machines use pneumatic or hydraulic lifts to place and remove the pressure plates.

The workpiece must be at least as hard as the lapping plate, or the abrasive will be charged into the work. It will take from 1 to 20 minutes to complete the machining cycle. Time depends on the amount of stock removed, the abrasive used and the quality required.

182.2 Grit and Plate Selection

Flatness, surface finish and a polished surface are not necessarily achieved at the same time or in equal quality. For example, silicon carbide compound will cut fast and give good surface finish, but will always leave a "frosty," or matte, surface.

The grits used for lapping may occasionally be as coarse as 100 to 280 mesh. More often, the "flour" sizes of 320 to 800 mesh are used. The grits, mixed in slurry, are flowed onto the plate to replace worn-out grits as the machining process continues.

The case for using diamond super abrasives rather than, conventional abrasives such as aluminum oxide or silicon carbide can be summed up in three words. Diamonds are faster, cleaner and more cost-effective.

With diamond slurries, the lapping and polishing phases of a finishing operation can often be combined into one step. Also, less time is required for cleaning parts and processing waste. Throughput, along with overall productivity, is increased.

Lapping plates are manufactured from various materials.

18.3 Advantages and Limitations

Any material, hard or soft, can be lapped, as well as any shape, as long as the surface is flat.

18.4 Honing Processes

As stated earlier, honing is a low-velocity abrading process. Material removal is accomplished at lower cutting speeds than in grinding. Therefore, heat and pressures are minimized, resulting in excellent size and geometry control. The most common application of honing is on internal cylindrical surfaces. A typical honing operation is shown on the following page.

Machining a hole to within less than 0.001" in diameter and maintaining true roundness and straightness with finishes less than 20[micro]" is one of the more difficult jobs in manufacturing.

Finish boring or internal grinding may do the job, but spindle deflection, variation in hardness of the material, and difficulties in precise work holding, make the work slow and the results uncertain. Honing, because it uses rectangular grinding stones instead of circular grinding wheels, can correct these irregularities.

Honing can consistently produce finishes as fine as 4[micro]" and even finer finishes are possible. It can remove as little as 0.0001" of stock or as much as 0.125" of stock. However, usually only 0.002" to 0.020" stock is left on the diameter for honing.

18.5 Honing Machines

For most work, honing machines are quite simple. The most-used honing machines are made for machining internal diameters from 0.060" to 6". However, large honing machines are made for diameters up to 48". Larger machines are sometimes made for special jobs.

The length of the hole that can be honed may be anything from 1/2" to 6" or 8" on smaller machines and up to 24" on larger machines. Special honing machines will handle hole lengths up to 144".

18.5.1 Horizontal Spindle Machines

Horizontal-spindle honing machines, for hand-held work with bores up to 6", are among the most widely used. The machine rotates the hone at from 100 to 250 fpm.

The machine operator moves the work back and forth (strokes it) over the rotating hone. The operator must "float" the work--that is, not press it against the hone or the hole will be slightly oval. Sometimes the workpiece must be rotated.

Horizontal-spindle honing machines are also made with "power stroking." In these, the work is held in a self-aligning fixture and the speed and length of the stroke are regulated by controls on the machine.

As a hone is being used, it is expanded by hydraulic or mechanical means until the desired hole diameter is achieved. Various mechanical and electrical devices can be attached to the honing machine to control the rate of expansion, and stop it when final size is reached.

On the simplest hand-held machines, the operator may check the bore size with an air gage, continue honing, recheck and so on until the size is correct.

18.5.2 Vertical Spindle Machines

Vertical-spindle honing machines are used especially for larger, heavier work. These all have power stroking at speeds from 20 to 120 Thin. The length of the stroke is also machine controlled by stops set up by the operator.

Vertical honing machines are also made with multiple spindles so that several holes may be machined at once, as in automobile cylinders.

Hone body: The hone body is made in several styles using a single stone for small holes, and two to eight stones as sizes get larger. The stones come in a wide variety of sizes and shapes. Frequently, there are hardened metal guides between the stones to help start the hone cutting in a straight line.

Cutting fluid: A fluid must be used with honing. This has several purposes: to clean the small chips from the stones and the workpiece, to cool the work and the hone and to lubricate the cutting action.

A fine mesh filtering system must be used, since recirculated metal can spoil the finish.

18.6 Abrasive Tool Selection

The abrasive honing stone must be selected for the proper abrasive type, bond hardness and grit size to deliver the fastest stock removal and desired surface finish. This selection is simple if done in the following three steps:

Step one: Select the abrasive type with respect to the material composition of the bore. There are four different types of abrasives: aluminum oxide, silicon carbide, diamond and CBN. (All four of these were discussed in the previous chapter.) Each type has its own individual characteristics that make it best for honing certain materials. Some simplified guidelines for their use are:

Diamond and CBN are considered super abrasives because they are much harder than conventional abrasives. They cut easily and dull slowly, therefore allowing them to hone certain materials much faster and more efficiently than conventional abrasives. However, as shown above, super abrasives are not suited to honing all materials. For instance, diamond does not hone steel very well, and CBN may not be as economical as using aluminum oxide to hone soft steel.

Step two: Use the stone hardness suggested in the manufacturer's catalog. If the stone does not cut, select the next softer stone; if the stone wears too fast, select the next harder stone. Stone hardness does not refer to the hardness of the abrasive grain, but to the strength of the bonding material holding the abrasive grains together, as discussed in the previous chapter.

Diamond and CBN abrasive grains dull so slowly that standard ceramic or resin bonds may not be strong enough when honing rough out-of-round bores in hard materials, or when CBN is used to hone soft steel. Metal bonds are best suited for these applications because the grains are held in a sintered metal matrix that is much stronger than standard bonds. As with choosing abrasive type, stone bond hardness must be matched to the application to maximize life and stock removal rates.

Step three: Select the largest abrasive grit size that will still produce the desired surface finish. Surface finish is a function of the height of microscopic peaks and valleys on the bore surface and honing can produce almost any degree of roughness or smoothness through the use of different abrasive grit sizes.

Honing oil can improve stock removal rates by helping the cutting action of the abrasive grains. It prevents pickup (spot welding of tool to bore) and loading (chips coating the stone). Honing oil does this, not by acting as a coolant, but through chemical activity.

18.7 Cylinder Block Honing

Bores sometime require a preliminary rough honing operation to remove stock, followed by finish honing to get the desired surface finish. A characteristic feature of a honed surface finish is crosshatch, which makes an excellent oil retention and bearing surface. The crosshatch pattern is generated in the bore surface as the workpiece is stroked back and forth over the rotating honing tool.

18.8 Production Honing

Honing will not only remove stock rapidly, but it can also bring the bore to finish diameter within tight tolerances. This is especially true if the honing machine is equipped with automatic size control. With every stroke, the workpiece is pushed against a sensing tip that has been adjusted to the finish diameter of the bore. When the bore is to size, the sensing tip enters the bore and the machine stops honing. Size repetition from bore to bore is 0.0001" to 0.0002". The operator simply loads and unloads the fixture and presses a button; everything else is automatic.

Single-stroke honing: A still faster and more accurate method of honing a bore to final size is single-stroke honing. The single-stroke tool is an expandable diamond-plated sleeve on a tapered arbor. The sleeve is expanded only during setup. No adjustments are necessary during honing. Unlike conventional honing, where the workpiece is stroked back and forth over the tool, in single-stroke honing the rotating tool is pushed through the bore one time, bringing the bore to size. The return stroke does nothing to the bore except get the workpiece off the tool. Single-stroke honing is so accurate and consistent that honed bores do not require gaging.

Although single-stroke honing has many advantages, it is limited in the types and volumes of material that can be removed. The size and overall volume of chip produced in one pass must be no more than the space between the diamond grits, or the tool will seize in the bore.

Workpieces are best suited for single-stroke honing when they are made of materials that produce small chips, such as cast iron, and when they have interruptions that allow chips to be washed from the tool as the bore is being honed. Conventional honing should be used whenever the material to be honed produces long stringy chips or when the amount of stock to be removed is large.

RELATED ARTICLE: Metal Removal

Cutting-Tool Materials

Metal Removal Methods

Machinability of Metals

Single Point Machining

Turning Tools and Operations

Turning Methods and Machines

Grooving and Threading

Shaping and Planing

Hole Making Processes

Drills and Drilling Operations

Drilling Methods and Machines

Boring Operations and Machines

Reaming and Tapping

Multi Point Machining

Milling Cutters and Operations

Milling Methods and Machines

Broaches and Broaching

Saws and Sawing

Abrasive Processes

Grinding Wheels and Operations

Grinding Methods and Machines

Lapping and Honing

Manufacturers Want Straight Talk That's What They Get From Stan

Columinist Stan Modic tackles the tough issues facing today's metalworking market. The veteran business journalist tells it like it is. That's why the movers and shakers in metalworking never miss his commentary each month in Tooling & Production. Can you afford to miss it, either?

George Schneider, Jr. CMfgE

Professor Emeritus

Engineering Technology

Lawrence Technological University

Former Chairman

Detroit Chapter ONE

Society of Manufacturing Engineers

Former President

International Excutive Board

Society of Carbide & Tool Engineers

Lawrence Tech.-www.ltu/edu

Prentice Hall-www.prenhall.com.
COPYRIGHT 2002 Nelson Publishing
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2002 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Author:Schneider, George, Jr.
Publication:Tooling & Production
Geographic Code:1USA
Date:Jun 1, 2002
Words:2378
Previous Article:Materials testing for dummies (and everyone else): A guide to twists, turns and the intentional crash. (Materials Testing).
Next Article:CNC cells rule in precision production: Hydraulic parts mixed and matched on CNC cell. (High-Volume Production).
Topics:



Related Articles
The nitty gritty of machining ceramic.
Abrasive micro-machining.
Fine grinding can be the answer.
Lapping for near perfect flatness. (Shop Talk).
Stahli USA. (Industry Shorts).
Yearend details...and holiday greetings! (At Large in the Shop).
Ceramics textbook. (Focus on Abrasive Machining).
Double-sided flat-honing holds [+ or -]2[mu], speeds production: a new fixed abrasive flat-honing technology has expanded the materials and tolerance...
IMTS 2006 Hall B.
Handbook of machining with grinding wheels.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters