Printer Friendly
The Free Library
22,728,043 articles and books

Assessing prostate cancer risk.



Prostate cancer screening Prostate cancer screening is an attempt to identify individuals with prostate cancer in a broad segment of the population—those for whom there is no reason to suspect prostate cancer.  has been the subject of much debate, given the recent recommendation by the U.S. Preventive Services Task Force against utilizing prostate-specific antigen for screening asymptomatic healthy males. Other organizations, including the American Cancer Society recommend that men be offered PSA (Professional Services Automation) An information system designed to organize, track and manage all opportunities, work, resources, costs, revenues and invoices to improve the productivity and efficiency of the workforce.  screening after an informed decision of the pros and cons of its use as a screening test.

About one in six men will be diagnosed with prostate cancer during their lifetime. For many, the disease will remain indolent indolent /in·do·lent/ (in´dah-lint)
1. causing little pain.

2. slow growing.


in·do·lent
adj.
1. Disinclined to exert oneself; habitually lazy.

2.
. Identifying men who are at high risk for an aggressive form of the cancer or those who will develop it at an earlier age remains a challenge.

Clearly, we need to improve screening options and our ability to accurately identify patients whose risk for aggressive prostate cancer is high. This seems like an ideal situation for genetics and genomics to help stratify risk and to guide treatment or screening interventions based on an individual's risk for developing an aggressive tumor.

The identification of high-risk genes for prostate cancer has proved difficult. We do not have highly penetrant pen·e·trant  
adj.
Penetrating; piercing: a penetrant wind from the north.

n.
Something that penetrates or is capable of penetrating.
 and relatively common genes for prostate cancer, similar to, for instance, the BRCA BRCA  

One of two genes (designated BRCA1 and BRCA2) that help repair damage to DNA, but when inherited in a defective state increase the risk of breast and ovarian cancer.
1/2 genes among families at high risk for breast and ovarian cancers. Some discoveries have been achieved, including the identification of a rare mutation in HOXB13. But such discoveries have so far provided answers for only a minority of families and patients (N. Engl. J. Med. 2012;366:141-9).

Given the challenge of identifying single genes that confer a high risk for developing disease, prostate cancer research has focused on detecting weaker genetic markers that in aggregate could potentially help explain why certain men face a higher risk for developing prostate cancer, or a more aggressive subtype of cancer.

Genomewide association studies (GWAS GWAS Genome-Wide Association Study
GWAS Generator and Waste Acceptance Services
) have been conducted and single nucleotide polymorphism Noun 1. single nucleotide polymorphism - (genetics) genetic variation in a DNA sequence that occurs when a single nucleotide in a genome is altered; SNPs are usually considered to be point mutations that have been evolutionarily successful enough to recur in a  (SNP) "panels" have been designed to help predict the risk of prostate cancer. These panels have led to commercial testing that is either physician directed or geared directly to the consumer. Most of the SNPs on these panels have low odds ratios (less than 2.0), so individually, they are not helpful for predicting significant disease risk or the likelihood of having aggressive disease. However, if multiple SNPs are aggregated on a panel and tested, a clinically useful picture could--in theory--be created.

In July, as part of the EGAPP (Evaluation of Genomic Applications in Practice and Prevention) project, the Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality,
n.pr formerly known as the Agency for Health Care Policy and Research, this agency researches the quality of medical care and health services.
 issued a final report on the current evidence of the "validity and utility of using SNP panels in the detection, diagnosis, and clinical management of prostate cancer." The extensive review identified 15 distinct SNP-based prostate cancer risk panels, including those marketed by Proactive Genomics LLC and deCode Genetics.

How well did these SNP panels perform in stratifying future risk or screening for current disease? Screening performance is often reported by generating an ROC (receiver operating characteristic) curve and measuring the AUC AUC

area under curve
 (area under the curve). Typically an AUG of at least 75% is necessary for the test to be considered clinically useful. AUCs for a 5-SNP panel ranged from 58% to 73%. The conclusion: There was little incremental gain over non-SNP--based models of prediction, and therefore there was little evidence that they improved risk stratification.

Could the SNP panels discriminate between clinically significant and indolent prostate cancer? Four panels ranging in size from 5 to 35 SNPs were evaluated, and none of the panels was able to reliably distinguish between more-or less-aggressive tumors.

As for prognosis prediction, a 5-SNP panel (with and without inclusion of family history), a 6-SNP panel, and a 16-SNP panel were used to predict mortality in men who had prostate cancer. Follow-up periods ranged from 3.7 to 10 years, depending on the study. Again, there was no evidence that the SNP panels improved the prediction of mortality--and thus prognosis--even when the information gained from the panel was added to models that included conventional prognostic factors (age, PSA, Gleason score, and tumor stage).

Given the limitations of PSA screening for detecting and determining the aggressiveness of prostate cancer, physicians hoping for a better screening tool may be tempted to utilize a genomics-based risk profile test such as an SNP panel. To date, unfortunately, the SNP-based models for prostate cancer risk assessment have not helped us to reliably distinguish between aggressive and nonaggressive disease, nor have they identified high-risk patients. Thus, such testing should not be utilized in clinical settings outside of research protocols.

The concept of applying SNP-based panels to assess disease risk is not novel, but we remain in the early stages of understanding how genomics plays a role in risk assessment and disease prognosis. A better under standing of both gene-gene interactions and how these interactions affect risk assessment for patients are paramount in moving such technology forward. Until then, it is premature to use these panels in the clinic.

PETER HULICK M.D.

DR. HULICK is a medical geneticist at NorthShore University HealthSystem, Evanston, Ill., and a clinical assistant professor at the University of Chicago. He reported having no conflicts of interest.
COPYRIGHT 2012 International Medical News Group
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2012 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Title Annotation:GENETICS IN YOUR PRACTICE
Author:Hulick, Peter
Publication:Internal Medicine News
Article Type:Disease/Disorder overview
Date:Aug 1, 2012
Words:846
Previous Article:Prednisolone eased OA knee pain by a third.
Next Article:Genome sequencing set to hunt for Alzheimer's clues.
Topics:

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters