Printer Friendly

An integro-differential inequality with application *.

Abstract

An integro-differential inequality is proposed together with an application to initial value problems.

Keywords and Phrases: Integro-differential equations, A priori bound on solutions, Essential maps, Topological transversality theorem.

1. Introduction

Differential inequalities have played a major role in the study of the existence, uniqueness, stability of solutions of ordinary differential equations. For more details, one can consult the monographs [?], [?], [?], [?] and the papers [?], [?] and references therein.

In this paper, we present a nonlinear integro-differential inequality and obtain some existence results for initial value problems for systems of first order integro-differential equations. Several papers have been devoted to linear as well as nonlinear integro-differential inequalities (see [?] for references). However, our assumptions are less restrictive and quite general. Also, our work is motivated by the recent results in [?].

2. A Nonlinear Integro-differential Inequality

We say that [omega] belongs to the class [OMEGA] if

(i) [omega]: [0, [infinity]) [right arrow] (0, [infinity]) is continuous and non-decreasing

(ii) There exists a positive continuous function R such that for each [delta] > 0,

[e.sup.-[delta]t][omega]([z]) [less than or equal to] R(t)[omega]([e.sub.-[delta]t][z])

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.]

(iii) [[integral].sub.[infinity].sub.0] [d[sigma]/[omega]]([sigma]) = [infinity]

We refer the reader to [?] for examples of such functions [omega]. Notice that E: [[??].sub.+] [right arrow] [[??].sub.+] defined by

E(l) = [[integral].sup.l.sub.0] d[sigma]/[omega]([sigma])

is strictly increasing and [lim.sub.l[right arrow][infinity]] E(l) = +[infinity]. Thus, [E.sub.-1] is well-defined and strictly increasing on (0, [infinity]).

Theorem 2.1. Let u be a non-negative function defined on [0, T] with a continuous first derivative such that u(0) = [u.sub.0] and

u'(t) [less than or equal to] au(t) + [[integral].sup.t.sub.0] k(s)[beta](s)[omega](u(s))ds (2.1)

where a > 0,k [member of] C([0, T]; [[??].sub.+]), [beta] [member of] [L.sup.1]([0,T]; [[??].sub.+]) and [omega] [member of] [OMEGA]. Then there exists a continuous function [??]: [0, T] [right arrow] [[??].sub.+] depending only on a, k, [beta] and R such that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (2.2)

for all t [member of] [0, T].

Proof. Let v(t) denote the right hand side of (??), namely,

v(t) = au(t) + [[integral].sup.t.sub.0] k(s)[beta](s)[omega](u(s))ds (2.3)

Then

u(t) [less than or equal to] v(t)/a, u'(t) [less than or equal to] v(t), v(0) = a[u.sub.0]

and

v'(t) = au'(t) + k(t)[beta](t)[omega](u(t)).

Hence

v'(t) [less than or equal to] av(t) + k(t)[beta](t)[omega](u(t)). (2.4)

Let [z](t) = v(t)[e.sup.-at]. Then (??) yields

z'(t) [less than or equal to] k(t)[beta](t)[e.sup.at][omega](v(t)/a)

Since [omega] [member of] [OMEGA]

z'(t) [less than or equal to] k(t)[beta](t)R(t)[omega]([e.sup.-at]v(t)/a) [less than or equal to] k(t)[beta](t)[omega](z(t)/a)

Letting Z(t) = z(t)/a, we obtain

Z'(t) [less than or equal to] [k(t)/a][beta](t)R(t)[omega](Z(t)), 0 [less than or equal to] t [less than or equal to] T (2.5)

It follows from (??) that

Z'(t)/[omega](Z(t)) [less than or equal to] [k(t)/a][beta](t)R(t), 0 [less than or equal to] t [less than or equal to] T (2.6)

An integration from 0 to t gives

[[integral].sup.t.sub.0] Z'(s)/[omega](Z(s))ds [less than or equal to] [1/a] [[integral].sup.t.sub.0] k(s)[beta](s)R(s)ds, 0 [less than or equal to] t [less than or equal to] T (2.7)

Consequently, making a change of variable in the first integral,

[[integral].sup.Z(t).sub.u0] [d[sigma]/[omega]([sigma])] [less than or equal to] [1/a] [[integral].sup.t.sub.0] k(s)[beta](s)R(s)ds (2.8)

Therefore, from the monotonicity of E,

Z(t) [less than or equal to] [E.sup.-1] (E([u.sub.0]) + [1/a] [[integral].sup.t.sub.0] k(s)[beta](s)R(s)ds), 0 [less than or equal to] t [less than or equal to] T (2.9)

Now, we have

u(t) [less than or equal to] [v(t)/a] = z(t)[e.sup.at]/a = Z(t)[e.sup.at] 0 [less than or equal to] t [less than or equal to] T

This shows that [??]: [0, T] [right arrow] [[??].sub.+] defined by

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (2.10)

is continuous and is such that u(t) [less than or equal to] [??](t) [for all]t [member of] [0, T]. This completes the proof of the Theorem.

3. Application

In this section, we consider an initial value problem for first order integro-differential equations in [[??].sup.n]. For x [member of] [[??.sup.n], we define .??] = [([summation].sup.n.sub.i=1] [[absolute value of [x.sub.i]].sup.2]).sup.1/2]. Consider the following

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (3.11)

where A(*) is a continuous n x n matrix, K : [0, T] x [0, T] [[??].sup.nxn] is continuous and f is an [L.sup.1]--Caratheodory function; that is,

(a) f(*, x) : [0, T] [right arrow] [[??.sup.n] is measurable for every x [member of] [[??.sup.n].

(b) f(t, x) : [[??.sup.n] [right arrow] [[??.sup.n] is continuous for almost all t [member of] [0, T].

(c) For each [rho] > 0, there exists [h.sub.[rho]] [member of] [L.sup.1] ([0, T];[[??.sub.+]) such that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.]

for almost all t [member of] [0, T].

We shall study the Cauchy problem (??) under the following assumptions:

(H1) The matrix A(*) is continuous on [0, T].

H2) K : [0, T] x [0, T] [right arrow] [[??].sup.nxn] is continuous.

(H3) f : [0, T] x [[??].sup.n] [right arrow] [[??].sup.n] is an [L.sup.1]--Caratheodory function satisfying

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.]

for all (t, x) [member of] [0, T] x [[??].sup.n] where q [member of] [L.sup.1]([0, T];[[??].sub.+]) and [omega] [member of] [OMEGA].

Theorem 3.1. Assume (H1), (H2) and (H3)are satisfied. Then problem (??) has at least one solution.

Proof. Consider the one parameter family of problems

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (3.12)

for 0 [less than or equal to] [lambda] [less than or equal to] 1. It is clear that (??) reduces to (??) when [lambda] = 1. Claim 1. Solutions of (??) are a priori bounded independently of [lambda]. For [lambda] = 0, the only solution of (??) is x(t) = 0 which is obviously bounded independently of [lambda]. So we consider 0 < [lambda] [less than or equal to] 1. Let [parallel][??][parallel] = [<x(t),x(t)>.sup.1/2] where <, > denotes the inner product in [[??].sup.n]. Then

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.]

for all t [member of] J := {t [member of] [0, T] : [parallel]x(t)[paralle]] > 0}. Hence, by Cauchy inequality, [parallel][??](t)[parallel]]' [less than or equal to] [parallel][??](t)[parallel] for all t [member of] J := {t [member of] [0,T] : [parallel][??](t)[parallel] > 0}. Let

[A.sub.0] = max {[parallel]A(t)[parallel] [member of] [0, T]}, [K.sub.0](s) := max {[parallel]K(t, s)[parallel]; t [member of] [0, T]}.

Then using (??) and assumption (H3),

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (3.13)

Application of Theorem ?? to (??) yields [parallel]x(t)[parallel] [less than or equal to] [??](t) where

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (3.14)

Let [M.sub.0] = [sup.sub.0[less than or equal to]t[less than or equal to]T] [??](t). Then [parallel]x(t)[parallel] [less than or equal to] [M.sub.0] independently of [lambda]. Furthermore,

[parallel]x[[parallel].sub.0] [less than or equal to] [M.sub.0] (3.15)

where [parallel]v[[parallel].sub.0] = sup {[parallel]v(t)[parallel]; t [member of] [0, T]} for any v [member of] C([0, T];[[??].sup.n]). Hence,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.] (3.16)

Claim 2. Let X := {x [member of] [C.sup.1]([0, T];[[??].sup.n]); x(0) = 0} be the Banach space endowed with the norm [[parallel]c[parallel].sub.1] = [parallel]x[[parallel].sub.0] + [paralle]x'[[parallel].sub.0]. It is clear that the operator L : X [right arrow] C([0, T];[[??].sup.n]) defined by Lx(t) = x'(t) is invertible and [L.sup.-1] is bounded. Consider the operator H : [0, 1] x X [right arrow] C([0, T];[[??].sup.n]) given by

H([lambda], x)(t) = [lambda][L.sup.-1]F(x)(t), 0 [less than or equal to] t [less than or equal to] T (3.17)

where

F(x)(t):= A(t)x(t) + [[integral].sup.t.sub.0] K(t,s)f(s,x(s))ds

One can easily show that H([lambda], *) is a compact homotopoy without fixed points on the boundary of the set U := {x [member of] X : [[parallel]x[[parallel].sub.1] < 1 + [M.sub.0] + [M.sub.1]} where

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.]

In fact, we can take

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII.]

(see property (c) of a Caratheodory function). We now use the topological transversality theorem (see [?], [?] for definitions and details) to prove that H(1, *) is essential because H(0, *) [equivalent to] 0 is essential. Therefore, H(1, *) has a fixed point in U which is a solution of problem (??) with [lambda] = 1, i.e., a solution of (??).

Remark 3.1 We can follow the arguments in [?] with minor modifications to obtain a solution of (??) for all t > 0. Also, we can consider the case of a non-zero initial condition.

Acknowledgements

The authors are grateful to King Fahd University of Petroleum and Minerals for its constant support.

References

[1] R. P. Agarwal and P. Y. H. Pang, Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Academic Publishers, Dordrecht, 1995.

[2] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1992.

[3] A. Constantin, Topological transversality: Application to integrodifferential equation, J. Math. Anal. Appl., 197 (1996), 855-863.

[4] J. Dugundji and A. Granas, Fixed Point Theory , Monografie Mat. PWN, Warsaw, 1982.

[5] M. Frigon, Application de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires, Dissert. Math. 296, P.W.N., Warsaw, 1990.

[6] M. Medved, A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl. 214 (1997), 349-366.

[7] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities Involving Functions and Their Integrals and Their Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.

[8] B. G. Pachpatte, On some new inequalities in the theory of differential equations, J. Math. Anal. Appl. 189 (1995), 128-144.

[9] W. Walter, Differential and Integral Inequalities, Springer-Verlag, New York, 1970.

Abdelkader Boucherif ([dagger]) and Yawvi A. Fiagbedzi ([double dagger])

Department of Mathematical Sciences

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

* Mathematics Subject Classification. Primary 34B10, 34B15; Secondary35B18.

([dagger]) Corresponding author Email:aboucher@kfupm.edu.sa

([double dagger]) E-mail:yawvi@kfupm.edu.sa
COPYRIGHT 2005 Aletheia University
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2005, Gale Group. All rights reserved. Gale Group is a Thomson Corporation Company.
srsr123
srsr123 (Member): request 1/25/2008 2:25 AM
salm
I can not understand what did the question marks indicate
to.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Author:Fiagbedzi, Yawvi A.
Publication:Tamsui Oxford Journal of Mathematical Sciences
Geographic Code:7SAUD
Date:Nov 1, 2005
Words:1900
Previous Article:Beta type 3 distribution and its multivariate generalization *.
Next Article:Multi-objective fuzzy linear programming and its application in transportation model.
Topics:


Related Articles
Persistent Disparity: Race and Economic Inequality in the United States Since 1945.
Integro joins London market with buy of Lloyd's broker.
Some finite difference inequalities of the Volterra type.
On an extended multiple Hardy-Hilbert's integral inequality *.
Some weighted generalizations of open Newton-Cotes type inequalities for mappings of bounded variation and their applications *.
A note on Chebychev-Gruss type inequalities for differentiable functions *.
Integro.
New Ostrowski and Gruss type inequalities.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters