Printer Friendly

A result about Young's inequality and several applications.

[section]1. Introduction

A series of the inequalities played an important role in various fields of mathematics. Among these we found the famous Young inequality

[lambda]a +(1 - [lambda])b [greater than or equal to] [a.sup.[lambda]] [b.sup.1-[lambda]], (1)

for nonnegative real numbers a, b and [lambda] [0,1].

The Young inequality was refined by F. Kittaneh and Y. Manasrah in [6], thus:

[lambda]a +(1 - [lambda])b [greater than or equal to] [a.sup.[lambda]] [b.sup.[1-[lambda]]] + r [([square root of a] - [square root of b]].sup.2] (2)

where r = min{[lambda], 1 - [lambda]}.

This inequality was generalized by S. Furuichi in [4], thus

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (3)

for a1,...,[a.sub.n] [greater than equal to] 0 and [p.sub.1],...,[p.sub.n] [greater than or equal to] 0 with [p.sub.1] + ... + [p.sub.n] = 1, where [p.sub.min] = min{p1,...,[p.sub.n]}.

Another generalizations can be found by J. M. Aldaz in [1] and [2].

In [9], M. Tominaga, showed the reverse inequality for Young's inequality, using Specth's ratio, thus

S(a / b) [a.sup.[lambda]][b.sup.[1-[lambda]]] [greater than or equal to] [lambda]a + (1 - [lambda])b, (4)

where the Specht's ratio [8] was defined by

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

for a positive real number h.

S. Furuichi, in [5] given another type of the improvement of the classical Young inequality by Specht's ratios, thus

[lambda]a + (1 - [lambda])b [greater than or equal to] S ([(a / b).sup.r]) [a.sup.[lambda]] [b.sup.1-[lambda]] . (5)

In fact Young's inequality is a special case of the Jensen inequality. Therefore, we seek some improvements of this inequality in many papers and books.

A main result given by S. Dragomir [3], in general form, is studied by F. C. Mitroi [7] in a particular case, thus

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (6)

where f is a convex function, pi > 0 for all i = 1,...,n and [n summation over (i=1) pi = 1.

[section]2. Main results

Theorem 2.1. For a,b > 0 and [lambda] [member of] (0,1), we have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (7)

where r = min{[lambda], 1 - [lambda]}.

Proof. In inequality (6) for n = 2, [p.sub.1] = [lambda], [p.sub.2] = 1 - [lambda], with [lambda] [member of](0,1), [x.sub.1] = a, [x.sub.2] = b, f( x) = - log x and taking account that 1 - r = max{[lambda], 1 - [lambda]} when r = min{[lambda], 1 - [lambda]}, we deduce the inequality of the statement.

Remark 2.1.

a) Because a + b / 2 [greater than or equal to] [square root of ab], it follows that a + b / 2 [square root of ab] [greater than or equal to] > 1 and using inequality (7) we obtain the Young inequality.

b) In relation (7) we have equality if only if a = b.

Theorem 2.2. For x > -1 and [lambda] [member of] (0,1), we have the inequality

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (8)

where r = min{[lambda], 1 - [lambda]}.

Proof. If we take a / b = t in inequality (7), then we have the following inequality b

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (9)

But, making the substitution t = x + 1 in relation (9) we have inequality (8).

Remark 2.2. Taking into account that [(x + 1).sup.2] + 1 / 2(x + 1) [greater than or equal to] 1, it is easy to see that inequality (8) is an improvement of the Bernoulli inequality (in the case [lambda] [member of](0, 1)). The equality holds when x = 1.

Theorem 2.3. Let p,q > 1 be real numbers satisfying 1 / p + 1 / q = 1. If [a.sub.i],[b.sub.i] > 0 for all

i = 1 , ..., n then there is the inequality

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (10)

where [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Proof. In Theorem 2.1 we take [lambda] = 1/p, which implies 1 - [lambda] = 1/q and [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (11)

Making the sum for i = 1, ..., n we deduce inequality (10).

Remark 2.3.

a) It is easy to see that [greater than or equal to] > 1 and using inequality (10) we have a refinement of Holder's inequality.

b) In relation (10) the equality holds when a1 = ...= an and b1 = ...= [b.sub.n].

c) For p = q = 2 in inequality (10), we obtain a refinement of Cauchy's inequality

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (12)

Theorem 2.4. For any real numbers [a.sub.i], [b.sub.i]> 0, for all i = 1,...,n and p > 0, we have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Proof. To prove this inequality, we will use the improvement of Holder's inequality from relation (10). We write

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Right now we apply inequality (10), in the following way,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (14)

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (15)

But (p - 1)q = p, because 1/p + 1/q = 1. Adding relations (14) and (15), and taking into account that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], we deduce the inequality

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (16)

Dividing by [n.summation over (I=1)][([a.sub.i] + [b.sub.i]).sup.p] in relation (14), we obtain the inequality required.

Remark 2.4.

a) Since m [greater than or equal] 1, we have an improvement of Minkowski's inequality.

b) The equality holds in relation (13) for [a.sub.1] = ...= [a.sub.n] and [b.sub.1] = ...= [b.sub.n]. The integral versions of these inequality can be formulated as follows.

Theorem 2.5. Let p > 1 and 1 / p + 1 / q = 1. If f and g are real functions f,g [not equal to] 0 defined on

[a,b] such that [[absolute value of f].sup.p] and [[absolute value of g].sup.p] are integrable functions on [a, b], then

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (17)

where r = min {1/p, 1/q},

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Equality holds iff [[absolute value of f(x)].sup.p] = [[absolute value of g(x)].sup.q]

Proof. We consider in Theorem 2.1 that [lambda] = 1/p and [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Therefore, we obtain

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

By integrates from a to b in above inequality and by simple calculations, we deduce the inequality of statement. For [[absolute value of f(x)].sup.p] = [[absolute value of g(x)].sup.q] it is obvious that the equality holds.

Remark 2.5.

a) Because m [greater than or equal] 1 and according to inequality (17), we find a refinement for the integrated version of the Holder inequality.

b) For p = q = 2, we deduce a refinement for the integral version of the Cauchy inequality can be formulated as follows:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (18)

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Theorem 2.6. Let p > 1 and f, g [not equal to] 0, two real functions defined on [a, b] such that [[absolute value of f].sup.p] and [[absolute value of g].sup.p] are integrable functions on [a,b], then

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (19)

where r = min{p, 1 - 1/p},

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

Proof. Since the Holder inequality is used to prove the Minkowski inequality, then we use Theorem 2.5, which is refinement of Hoolder's inequality, for to prove inequality (19). Therefore

[[absolute value of f(x) + g(x)].sup.p] [less than tha or equal to] [[absolute value of f(x)[parallel]f(x) + g(x)].sup.p-1] + [[absolute value of g(x)] x [[absolute value of f(x) + g(x)].sup.p-1],

it follows that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

We apply Theorem 2.5 in the following way:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (20)

where [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

In analogous way, we have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (21)

where [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

But (p - 1)q = p. Therefore, adding inequalities (20) and (21), and taking into account that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] we deduce

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (22)

Dividing the above inequality by [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], we obtain the inequality desired.

References

[1] J. M. Aldaz, Comparison of differences between arithmetic and geometric means, arXiv 1001. 5055v2, 2010.

[2] J. M. Aldaz, Self-improvement of the inequality between arithmetic and geometric means, Journal of Mathematical Inequalities, 3(2009), No. 2, 213-216.

[3] S. S. Dragomir, Bounds for the Normalized Jensen Functional, Bull. Austral. Math. Soc., 74(2006), No. 3, 471-478.

[4] S. Furuichi, A refinement of the arithmetic-geometric mean inequality, arXiv: 0912. 52 27v1, 2009.

[5] S. Furuichi, Refined Young inequalities with Specht's ratio, arXiv: 1004. 0581v2, 2010.

[6] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl., 36(2010), 262-269.

[7] F. C. Mitroi, About the precision in Jensen-Steffensen inequality, Annals of the University of Craiova, Mathematics and Computer Science Series, 37(2010), No. 3, 73-84.

[8] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74(1960), 91-98.

[9] M. Tominaga, Specht'ratio in the Young inequality, Sci. Math. Japon, 55(2002), 538- 588.

Nicusor Minculete

"Dimitrie Cantemir" University, Brasov 500068, Romania

E-mail: minculeten@yahoo.com
COPYRIGHT 2011 American Research Press
No portion of this article can be reproduced without the express written permission from the copyright holder.
Copyright 2011 Gale, Cengage Learning. All rights reserved.

 Reader Opinion

Title:

Comment:



 

Article Details
Printer friendly Cite/link Email Feedback
Author:Minculete, Nicusor
Publication:Scientia Magna
Date:Jan 1, 2011
Words:1571
Previous Article:Introduction of eigen values on relative character graphs.
Next Article:Composition operators of k-paranormal operators.

Terms of use | Copyright © 2014 Farlex, Inc. | Feedback | For webmasters